2D Oxides Realized via Confinement Heteroepitaxy

Abstract Novel confinement techniques facilitate the formation of non‐layered 2D materials. Here it is demonstrated that the formation and properties of 2D oxides (GaO x , InO x , SnO x ) at the epitaxial graphene (EG)/silicon carbide (SiC) interface is dependent on the EG buffer layer properties pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-11, Vol.33 (5)
Hauptverfasser: Turker, Furkan, Dong, Chengye, Wetherington, Maxwell T., El‐Sherif, Hesham, Holoviak, Stephen, Trdinich, Zachary J., Lawson, Eric T., Krishnan, Gopi, Whittier, Caleb, Sinnott, Susan B., Bassim, Nabil, Robinson, Joshua A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 33
creator Turker, Furkan
Dong, Chengye
Wetherington, Maxwell T.
El‐Sherif, Hesham
Holoviak, Stephen
Trdinich, Zachary J.
Lawson, Eric T.
Krishnan, Gopi
Whittier, Caleb
Sinnott, Susan B.
Bassim, Nabil
Robinson, Joshua A.
description Abstract Novel confinement techniques facilitate the formation of non‐layered 2D materials. Here it is demonstrated that the formation and properties of 2D oxides (GaO x , InO x , SnO x ) at the epitaxial graphene (EG)/silicon carbide (SiC) interface is dependent on the EG buffer layer properties prior to element intercalation. Using 2D Ga, it is demonstrated that defects in the EG buffer layer lead to Ga transforming to GaO x with non‐periodic oxygen in a crystalline Ga matrix via air oxidation at room temperature. However, crystalline monolayer GaO 2 and bilayer Ga 2 O 3 with ferroelectric wurtzite structure(FE‐WZ') can then be formed via subsequent high‐temperature O 2 annealing. Furthermore, the graphene/X/SiC (X = 2D Ga or Ga 2 O 3 ) junction is tunable from Ohmic to a Schottky or tunnel barrier depending on the interface species. Finally, using vertical transport measurements and electron energy loss spectroscopy analysis, the bandgap of 2D gallium oxide is identified as 6.6 ± 0.6 eV, significantly larger than that of bulk β‐Ga 2 O 3 (≈4.8 eV), suggesting strong quantum confinement effects at the 2D limit. The study presented here is foundational for development of atomic‐scale, vertical 2D/3D heterostructure for applications requiring short transit times, such as GHz and THz devices.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1922237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1922237</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19222373</originalsourceid><addsrcrecordid>eNpjYuA0NDM00zU2MLJggbMNIzgYuIqLswwMDM3NjU04GQyMXBT8KzJTUosVglITczKrUlMUyjITFZzz89Iy81JzU_NKFDxSS1KL8lMLMksSKyp5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckm8oaWRkZGxuTFRigDFfDQr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>2D Oxides Realized via Confinement Heteroepitaxy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Turker, Furkan ; Dong, Chengye ; Wetherington, Maxwell T. ; El‐Sherif, Hesham ; Holoviak, Stephen ; Trdinich, Zachary J. ; Lawson, Eric T. ; Krishnan, Gopi ; Whittier, Caleb ; Sinnott, Susan B. ; Bassim, Nabil ; Robinson, Joshua A.</creator><creatorcontrib>Turker, Furkan ; Dong, Chengye ; Wetherington, Maxwell T. ; El‐Sherif, Hesham ; Holoviak, Stephen ; Trdinich, Zachary J. ; Lawson, Eric T. ; Krishnan, Gopi ; Whittier, Caleb ; Sinnott, Susan B. ; Bassim, Nabil ; Robinson, Joshua A.</creatorcontrib><description>Abstract Novel confinement techniques facilitate the formation of non‐layered 2D materials. Here it is demonstrated that the formation and properties of 2D oxides (GaO x , InO x , SnO x ) at the epitaxial graphene (EG)/silicon carbide (SiC) interface is dependent on the EG buffer layer properties prior to element intercalation. Using 2D Ga, it is demonstrated that defects in the EG buffer layer lead to Ga transforming to GaO x with non‐periodic oxygen in a crystalline Ga matrix via air oxidation at room temperature. However, crystalline monolayer GaO 2 and bilayer Ga 2 O 3 with ferroelectric wurtzite structure(FE‐WZ') can then be formed via subsequent high‐temperature O 2 annealing. Furthermore, the graphene/X/SiC (X = 2D Ga or Ga 2 O 3 ) junction is tunable from Ohmic to a Schottky or tunnel barrier depending on the interface species. Finally, using vertical transport measurements and electron energy loss spectroscopy analysis, the bandgap of 2D gallium oxide is identified as 6.6 ± 0.6 eV, significantly larger than that of bulk β‐Ga 2 O 3 (≈4.8 eV), suggesting strong quantum confinement effects at the 2D limit. The study presented here is foundational for development of atomic‐scale, vertical 2D/3D heterostructure for applications requiring short transit times, such as GHz and THz devices.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><language>eng</language><publisher>Germany: Wiley Blackwell (John Wiley &amp; Sons)</publisher><ispartof>Advanced functional materials, 2022-11, Vol.33 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000223858849 ; 0000000235980403 ; 0000000299322805 ; 0000000291615769 ; 0000000215137187 ; 0000000168750762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1922237$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Turker, Furkan</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Wetherington, Maxwell T.</creatorcontrib><creatorcontrib>El‐Sherif, Hesham</creatorcontrib><creatorcontrib>Holoviak, Stephen</creatorcontrib><creatorcontrib>Trdinich, Zachary J.</creatorcontrib><creatorcontrib>Lawson, Eric T.</creatorcontrib><creatorcontrib>Krishnan, Gopi</creatorcontrib><creatorcontrib>Whittier, Caleb</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><creatorcontrib>Bassim, Nabil</creatorcontrib><creatorcontrib>Robinson, Joshua A.</creatorcontrib><title>2D Oxides Realized via Confinement Heteroepitaxy</title><title>Advanced functional materials</title><description>Abstract Novel confinement techniques facilitate the formation of non‐layered 2D materials. Here it is demonstrated that the formation and properties of 2D oxides (GaO x , InO x , SnO x ) at the epitaxial graphene (EG)/silicon carbide (SiC) interface is dependent on the EG buffer layer properties prior to element intercalation. Using 2D Ga, it is demonstrated that defects in the EG buffer layer lead to Ga transforming to GaO x with non‐periodic oxygen in a crystalline Ga matrix via air oxidation at room temperature. However, crystalline monolayer GaO 2 and bilayer Ga 2 O 3 with ferroelectric wurtzite structure(FE‐WZ') can then be formed via subsequent high‐temperature O 2 annealing. Furthermore, the graphene/X/SiC (X = 2D Ga or Ga 2 O 3 ) junction is tunable from Ohmic to a Schottky or tunnel barrier depending on the interface species. Finally, using vertical transport measurements and electron energy loss spectroscopy analysis, the bandgap of 2D gallium oxide is identified as 6.6 ± 0.6 eV, significantly larger than that of bulk β‐Ga 2 O 3 (≈4.8 eV), suggesting strong quantum confinement effects at the 2D limit. The study presented here is foundational for development of atomic‐scale, vertical 2D/3D heterostructure for applications requiring short transit times, such as GHz and THz devices.</description><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDM00zU2MLJggbMNIzgYuIqLswwMDM3NjU04GQyMXBT8KzJTUosVglITczKrUlMUyjITFZzz89Iy81JzU_NKFDxSS1KL8lMLMksSKyp5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckm8oaWRkZGxuTFRigDFfDQr</recordid><startdate>20221123</startdate><enddate>20221123</enddate><creator>Turker, Furkan</creator><creator>Dong, Chengye</creator><creator>Wetherington, Maxwell T.</creator><creator>El‐Sherif, Hesham</creator><creator>Holoviak, Stephen</creator><creator>Trdinich, Zachary J.</creator><creator>Lawson, Eric T.</creator><creator>Krishnan, Gopi</creator><creator>Whittier, Caleb</creator><creator>Sinnott, Susan B.</creator><creator>Bassim, Nabil</creator><creator>Robinson, Joshua A.</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000223858849</orcidid><orcidid>https://orcid.org/0000000235980403</orcidid><orcidid>https://orcid.org/0000000299322805</orcidid><orcidid>https://orcid.org/0000000291615769</orcidid><orcidid>https://orcid.org/0000000215137187</orcidid><orcidid>https://orcid.org/0000000168750762</orcidid></search><sort><creationdate>20221123</creationdate><title>2D Oxides Realized via Confinement Heteroepitaxy</title><author>Turker, Furkan ; Dong, Chengye ; Wetherington, Maxwell T. ; El‐Sherif, Hesham ; Holoviak, Stephen ; Trdinich, Zachary J. ; Lawson, Eric T. ; Krishnan, Gopi ; Whittier, Caleb ; Sinnott, Susan B. ; Bassim, Nabil ; Robinson, Joshua A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19222373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turker, Furkan</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Wetherington, Maxwell T.</creatorcontrib><creatorcontrib>El‐Sherif, Hesham</creatorcontrib><creatorcontrib>Holoviak, Stephen</creatorcontrib><creatorcontrib>Trdinich, Zachary J.</creatorcontrib><creatorcontrib>Lawson, Eric T.</creatorcontrib><creatorcontrib>Krishnan, Gopi</creatorcontrib><creatorcontrib>Whittier, Caleb</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><creatorcontrib>Bassim, Nabil</creatorcontrib><creatorcontrib>Robinson, Joshua A.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turker, Furkan</au><au>Dong, Chengye</au><au>Wetherington, Maxwell T.</au><au>El‐Sherif, Hesham</au><au>Holoviak, Stephen</au><au>Trdinich, Zachary J.</au><au>Lawson, Eric T.</au><au>Krishnan, Gopi</au><au>Whittier, Caleb</au><au>Sinnott, Susan B.</au><au>Bassim, Nabil</au><au>Robinson, Joshua A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D Oxides Realized via Confinement Heteroepitaxy</atitle><jtitle>Advanced functional materials</jtitle><date>2022-11-23</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Abstract Novel confinement techniques facilitate the formation of non‐layered 2D materials. Here it is demonstrated that the formation and properties of 2D oxides (GaO x , InO x , SnO x ) at the epitaxial graphene (EG)/silicon carbide (SiC) interface is dependent on the EG buffer layer properties prior to element intercalation. Using 2D Ga, it is demonstrated that defects in the EG buffer layer lead to Ga transforming to GaO x with non‐periodic oxygen in a crystalline Ga matrix via air oxidation at room temperature. However, crystalline monolayer GaO 2 and bilayer Ga 2 O 3 with ferroelectric wurtzite structure(FE‐WZ') can then be formed via subsequent high‐temperature O 2 annealing. Furthermore, the graphene/X/SiC (X = 2D Ga or Ga 2 O 3 ) junction is tunable from Ohmic to a Schottky or tunnel barrier depending on the interface species. Finally, using vertical transport measurements and electron energy loss spectroscopy analysis, the bandgap of 2D gallium oxide is identified as 6.6 ± 0.6 eV, significantly larger than that of bulk β‐Ga 2 O 3 (≈4.8 eV), suggesting strong quantum confinement effects at the 2D limit. The study presented here is foundational for development of atomic‐scale, vertical 2D/3D heterostructure for applications requiring short transit times, such as GHz and THz devices.</abstract><cop>Germany</cop><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><orcidid>https://orcid.org/0000000223858849</orcidid><orcidid>https://orcid.org/0000000235980403</orcidid><orcidid>https://orcid.org/0000000299322805</orcidid><orcidid>https://orcid.org/0000000291615769</orcidid><orcidid>https://orcid.org/0000000215137187</orcidid><orcidid>https://orcid.org/0000000168750762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-11, Vol.33 (5)
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1922237
source Wiley Online Library Journals Frontfile Complete
title 2D Oxides Realized via Confinement Heteroepitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20Oxides%20Realized%20via%20Confinement%20Heteroepitaxy&rft.jtitle=Advanced%20functional%20materials&rft.au=Turker,%20Furkan&rft.date=2022-11-23&rft.volume=33&rft.issue=5&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/&rft_dat=%3Costi%3E1922237%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true