Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry
Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2022-03, Vol.61 (14), p.e202116560-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | e202116560 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 61 |
creator | Cai, Zhao Wang, Jindi Lu, Ziheng Zhan, Renming Ou, Yangtao Wang, Li Dahbi, Mouad Alami, Jones Lu, Jun Amine, Khalil Sun, Yongming |
description | Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells.
Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved. |
doi_str_mv | 10.1002/anie.202116560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1922230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640952480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhlcIREKgpUQWNDR7-GM_vGU4XeCkhEiQNDTWrHc252jPPmwv0Xbp0_Ab-SX42BAkGipb9jPPePxm2UtGF4xS_g6swQWnnLGqrOij7JCVnOWirsXjtC-EyGtZsoPsWQjXiZeSVk-zA1FSKUtKD7O7yyF66CFEcoYRBrIaUEfvOty5YKJxlnzG7wgDdqSdyNqSLyaO5HwXjU70egtXxl4RsB252KDzOJ-fJcGwv4juBnwXyEnq8PP2x3ID_nfBV0veQ4zoJ7Lc4NaE6Kfn2ZMehoAv7tej7PJkdbH8mJ-ef1gvj09zXRSU5roSArqeSVYyURaylVQ0HATTgja6hoILijXnWshWNJpzgArbXpQNdLRNf3KUvZ69LkSjgjYR9UY7a9PkijWcJ0GC3s7QzrtvI4ao0iM1DgNYdGNQvOJCNoKzOqFv_kGv3ehtGiFRBW1KXsi9cDFT2rsQPPZq580W_KQYVfss1T5L9ZBlKnh1rx3bLXYP-J_wEtDMwI0ZcPqPTh1_Wq_-yn8B4FOrnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640952480</pqid></control><display><type>article</type><title>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cai, Zhao ; Wang, Jindi ; Lu, Ziheng ; Zhan, Renming ; Ou, Yangtao ; Wang, Li ; Dahbi, Mouad ; Alami, Jones ; Lu, Jun ; Amine, Khalil ; Sun, Yongming</creator><creatorcontrib>Cai, Zhao ; Wang, Jindi ; Lu, Ziheng ; Zhan, Renming ; Ou, Yangtao ; Wang, Li ; Dahbi, Mouad ; Alami, Jones ; Lu, Jun ; Amine, Khalil ; Sun, Yongming ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells.
Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202116560</identifier><identifier>PMID: 35088500</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Aqueous Battery ; Batteries ; Charging ; Crystallography ; Electrode materials ; Electrodeposition ; Electrodes ; Electrolytic cells ; Energy storage ; Fast charging ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ion diffusion ; Lithium ; Manganese dioxide ; Metals ; Modelling ; Rechargeable batteries ; Renewable energy ; Reversibility ; Smart grid ; Storage batteries ; Ultrafast metal ; Zinc ; Zinc sulfate ; Zn Anode ; Zn battery</subject><ispartof>Angewandte Chemie (International ed.), 2022-03, Vol.61 (14), p.e202116560-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</citedby><cites>FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</cites><orcidid>0000-0003-0858-8577 ; 0000000308588577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202116560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202116560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35088500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1922230$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Wang, Jindi</creatorcontrib><creatorcontrib>Lu, Ziheng</creatorcontrib><creatorcontrib>Zhan, Renming</creatorcontrib><creatorcontrib>Ou, Yangtao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dahbi, Mouad</creatorcontrib><creatorcontrib>Alami, Jones</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sun, Yongming</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells.
Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.</description><subject>Anodes</subject><subject>Aqueous Battery</subject><subject>Batteries</subject><subject>Charging</subject><subject>Crystallography</subject><subject>Electrode materials</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Fast charging</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Manganese dioxide</subject><subject>Metals</subject><subject>Modelling</subject><subject>Rechargeable batteries</subject><subject>Renewable energy</subject><subject>Reversibility</subject><subject>Smart grid</subject><subject>Storage batteries</subject><subject>Ultrafast metal</subject><subject>Zinc</subject><subject>Zinc sulfate</subject><subject>Zn Anode</subject><subject>Zn battery</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhlcIREKgpUQWNDR7-GM_vGU4XeCkhEiQNDTWrHc252jPPmwv0Xbp0_Ab-SX42BAkGipb9jPPePxm2UtGF4xS_g6swQWnnLGqrOij7JCVnOWirsXjtC-EyGtZsoPsWQjXiZeSVk-zA1FSKUtKD7O7yyF66CFEcoYRBrIaUEfvOty5YKJxlnzG7wgDdqSdyNqSLyaO5HwXjU70egtXxl4RsB252KDzOJ-fJcGwv4juBnwXyEnq8PP2x3ID_nfBV0veQ4zoJ7Lc4NaE6Kfn2ZMehoAv7tej7PJkdbH8mJ-ef1gvj09zXRSU5roSArqeSVYyURaylVQ0HATTgja6hoILijXnWshWNJpzgArbXpQNdLRNf3KUvZ69LkSjgjYR9UY7a9PkijWcJ0GC3s7QzrtvI4ao0iM1DgNYdGNQvOJCNoKzOqFv_kGv3ehtGiFRBW1KXsi9cDFT2rsQPPZq580W_KQYVfss1T5L9ZBlKnh1rx3bLXYP-J_wEtDMwI0ZcPqPTh1_Wq_-yn8B4FOrnw</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Cai, Zhao</creator><creator>Wang, Jindi</creator><creator>Lu, Ziheng</creator><creator>Zhan, Renming</creator><creator>Ou, Yangtao</creator><creator>Wang, Li</creator><creator>Dahbi, Mouad</creator><creator>Alami, Jones</creator><creator>Lu, Jun</creator><creator>Amine, Khalil</creator><creator>Sun, Yongming</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid></search><sort><creationdate>20220328</creationdate><title>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</title><author>Cai, Zhao ; Wang, Jindi ; Lu, Ziheng ; Zhan, Renming ; Ou, Yangtao ; Wang, Li ; Dahbi, Mouad ; Alami, Jones ; Lu, Jun ; Amine, Khalil ; Sun, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Aqueous Battery</topic><topic>Batteries</topic><topic>Charging</topic><topic>Crystallography</topic><topic>Electrode materials</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Fast charging</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Manganese dioxide</topic><topic>Metals</topic><topic>Modelling</topic><topic>Rechargeable batteries</topic><topic>Renewable energy</topic><topic>Reversibility</topic><topic>Smart grid</topic><topic>Storage batteries</topic><topic>Ultrafast metal</topic><topic>Zinc</topic><topic>Zinc sulfate</topic><topic>Zn Anode</topic><topic>Zn battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Wang, Jindi</creatorcontrib><creatorcontrib>Lu, Ziheng</creatorcontrib><creatorcontrib>Zhan, Renming</creatorcontrib><creatorcontrib>Ou, Yangtao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dahbi, Mouad</creatorcontrib><creatorcontrib>Alami, Jones</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sun, Yongming</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhao</au><au>Wang, Jindi</au><au>Lu, Ziheng</au><au>Zhan, Renming</au><au>Ou, Yangtao</au><au>Wang, Li</au><au>Dahbi, Mouad</au><au>Alami, Jones</au><au>Lu, Jun</au><au>Amine, Khalil</au><au>Sun, Yongming</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-03-28</date><risdate>2022</risdate><volume>61</volume><issue>14</issue><spage>e202116560</spage><epage>n/a</epage><pages>e202116560-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells.
Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35088500</pmid><doi>10.1002/anie.202116560</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2022-03, Vol.61 (14), p.e202116560-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1922230 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Aqueous Battery Batteries Charging Crystallography Electrode materials Electrodeposition Electrodes Electrolytic cells Energy storage Fast charging INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ion diffusion Lithium Manganese dioxide Metals Modelling Rechargeable batteries Renewable energy Reversibility Smart grid Storage batteries Ultrafast metal Zinc Zinc sulfate Zn Anode Zn battery |
title | Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Metal%20Electrodeposition%20Revealed%20by%20In%20Situ%20Optical%20Imaging%20and%20Theoretical%20Modeling%20towards%20Fast%E2%80%90Charging%20Zn%20Battery%20Chemistry&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Cai,%20Zhao&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-03-28&rft.volume=61&rft.issue=14&rft.spage=e202116560&rft.epage=n/a&rft.pages=e202116560-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202116560&rft_dat=%3Cproquest_osti_%3E2640952480%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640952480&rft_id=info:pmid/35088500&rfr_iscdi=true |