Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry

Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2022-03, Vol.61 (14), p.e202116560-n/a
Hauptverfasser: Cai, Zhao, Wang, Jindi, Lu, Ziheng, Zhan, Renming, Ou, Yangtao, Wang, Li, Dahbi, Mouad, Alami, Jones, Lu, Jun, Amine, Khalil, Sun, Yongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e202116560
container_title Angewandte Chemie (International ed.)
container_volume 61
creator Cai, Zhao
Wang, Jindi
Lu, Ziheng
Zhan, Renming
Ou, Yangtao
Wang, Li
Dahbi, Mouad
Alami, Jones
Lu, Jun
Amine, Khalil
Sun, Yongming
description Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells. Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.
doi_str_mv 10.1002/anie.202116560
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1922230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2640952480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhlcIREKgpUQWNDR7-GM_vGU4XeCkhEiQNDTWrHc252jPPmwv0Xbp0_Ab-SX42BAkGipb9jPPePxm2UtGF4xS_g6swQWnnLGqrOij7JCVnOWirsXjtC-EyGtZsoPsWQjXiZeSVk-zA1FSKUtKD7O7yyF66CFEcoYRBrIaUEfvOty5YKJxlnzG7wgDdqSdyNqSLyaO5HwXjU70egtXxl4RsB252KDzOJ-fJcGwv4juBnwXyEnq8PP2x3ID_nfBV0veQ4zoJ7Lc4NaE6Kfn2ZMehoAv7tej7PJkdbH8mJ-ef1gvj09zXRSU5roSArqeSVYyURaylVQ0HATTgja6hoILijXnWshWNJpzgArbXpQNdLRNf3KUvZ69LkSjgjYR9UY7a9PkijWcJ0GC3s7QzrtvI4ao0iM1DgNYdGNQvOJCNoKzOqFv_kGv3ehtGiFRBW1KXsi9cDFT2rsQPPZq580W_KQYVfss1T5L9ZBlKnh1rx3bLXYP-J_wEtDMwI0ZcPqPTh1_Wq_-yn8B4FOrnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640952480</pqid></control><display><type>article</type><title>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cai, Zhao ; Wang, Jindi ; Lu, Ziheng ; Zhan, Renming ; Ou, Yangtao ; Wang, Li ; Dahbi, Mouad ; Alami, Jones ; Lu, Jun ; Amine, Khalil ; Sun, Yongming</creator><creatorcontrib>Cai, Zhao ; Wang, Jindi ; Lu, Ziheng ; Zhan, Renming ; Ou, Yangtao ; Wang, Li ; Dahbi, Mouad ; Alami, Jones ; Lu, Jun ; Amine, Khalil ; Sun, Yongming ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells. Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202116560</identifier><identifier>PMID: 35088500</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Aqueous Battery ; Batteries ; Charging ; Crystallography ; Electrode materials ; Electrodeposition ; Electrodes ; Electrolytic cells ; Energy storage ; Fast charging ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ion diffusion ; Lithium ; Manganese dioxide ; Metals ; Modelling ; Rechargeable batteries ; Renewable energy ; Reversibility ; Smart grid ; Storage batteries ; Ultrafast metal ; Zinc ; Zinc sulfate ; Zn Anode ; Zn battery</subject><ispartof>Angewandte Chemie (International ed.), 2022-03, Vol.61 (14), p.e202116560-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</citedby><cites>FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</cites><orcidid>0000-0003-0858-8577 ; 0000000308588577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202116560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202116560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35088500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1922230$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Wang, Jindi</creatorcontrib><creatorcontrib>Lu, Ziheng</creatorcontrib><creatorcontrib>Zhan, Renming</creatorcontrib><creatorcontrib>Ou, Yangtao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dahbi, Mouad</creatorcontrib><creatorcontrib>Alami, Jones</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sun, Yongming</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells. Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.</description><subject>Anodes</subject><subject>Aqueous Battery</subject><subject>Batteries</subject><subject>Charging</subject><subject>Crystallography</subject><subject>Electrode materials</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Fast charging</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Manganese dioxide</subject><subject>Metals</subject><subject>Modelling</subject><subject>Rechargeable batteries</subject><subject>Renewable energy</subject><subject>Reversibility</subject><subject>Smart grid</subject><subject>Storage batteries</subject><subject>Ultrafast metal</subject><subject>Zinc</subject><subject>Zinc sulfate</subject><subject>Zn Anode</subject><subject>Zn battery</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhlcIREKgpUQWNDR7-GM_vGU4XeCkhEiQNDTWrHc252jPPmwv0Xbp0_Ab-SX42BAkGipb9jPPePxm2UtGF4xS_g6swQWnnLGqrOij7JCVnOWirsXjtC-EyGtZsoPsWQjXiZeSVk-zA1FSKUtKD7O7yyF66CFEcoYRBrIaUEfvOty5YKJxlnzG7wgDdqSdyNqSLyaO5HwXjU70egtXxl4RsB252KDzOJ-fJcGwv4juBnwXyEnq8PP2x3ID_nfBV0veQ4zoJ7Lc4NaE6Kfn2ZMehoAv7tej7PJkdbH8mJ-ef1gvj09zXRSU5roSArqeSVYyURaylVQ0HATTgja6hoILijXnWshWNJpzgArbXpQNdLRNf3KUvZ69LkSjgjYR9UY7a9PkijWcJ0GC3s7QzrtvI4ao0iM1DgNYdGNQvOJCNoKzOqFv_kGv3ehtGiFRBW1KXsi9cDFT2rsQPPZq580W_KQYVfss1T5L9ZBlKnh1rx3bLXYP-J_wEtDMwI0ZcPqPTh1_Wq_-yn8B4FOrnw</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Cai, Zhao</creator><creator>Wang, Jindi</creator><creator>Lu, Ziheng</creator><creator>Zhan, Renming</creator><creator>Ou, Yangtao</creator><creator>Wang, Li</creator><creator>Dahbi, Mouad</creator><creator>Alami, Jones</creator><creator>Lu, Jun</creator><creator>Amine, Khalil</creator><creator>Sun, Yongming</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid></search><sort><creationdate>20220328</creationdate><title>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</title><author>Cai, Zhao ; Wang, Jindi ; Lu, Ziheng ; Zhan, Renming ; Ou, Yangtao ; Wang, Li ; Dahbi, Mouad ; Alami, Jones ; Lu, Jun ; Amine, Khalil ; Sun, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4400-c633adf181513548b80392a31c309c7a4230e722c38b39c22aa6ebf359ad0b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Aqueous Battery</topic><topic>Batteries</topic><topic>Charging</topic><topic>Crystallography</topic><topic>Electrode materials</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Fast charging</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Manganese dioxide</topic><topic>Metals</topic><topic>Modelling</topic><topic>Rechargeable batteries</topic><topic>Renewable energy</topic><topic>Reversibility</topic><topic>Smart grid</topic><topic>Storage batteries</topic><topic>Ultrafast metal</topic><topic>Zinc</topic><topic>Zinc sulfate</topic><topic>Zn Anode</topic><topic>Zn battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhao</creatorcontrib><creatorcontrib>Wang, Jindi</creatorcontrib><creatorcontrib>Lu, Ziheng</creatorcontrib><creatorcontrib>Zhan, Renming</creatorcontrib><creatorcontrib>Ou, Yangtao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Dahbi, Mouad</creatorcontrib><creatorcontrib>Alami, Jones</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Sun, Yongming</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhao</au><au>Wang, Jindi</au><au>Lu, Ziheng</au><au>Zhan, Renming</au><au>Ou, Yangtao</au><au>Wang, Li</au><au>Dahbi, Mouad</au><au>Alami, Jones</au><au>Lu, Jun</au><au>Amine, Khalil</au><au>Sun, Yongming</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-03-28</date><risdate>2022</risdate><volume>61</volume><issue>14</issue><spage>e202116560</spage><epage>n/a</epage><pages>e202116560-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast‐charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+‐ion diffusion. Moreover, steady‐state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10–100 mA cm−2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long‐term cycling‐stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm−2 in both Zn||Zn symmetrical cells and MnO2||Zn full cells. Ultrafast metal electrodeposition in fast‐charging Zn batteries was investigated by in situ optical imaging and theoretical modeling. The critical parameters governing the electrodeposition stability of the metallic Zn electrode were uncovered, guided by which a highly reversible Zn metal electrode in an aqueous battery with a depth of discharge of 66.7 % at 50 mA cm−2 was achieved.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35088500</pmid><doi>10.1002/anie.202116560</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2022-03, Vol.61 (14), p.e202116560-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1922230
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Aqueous Battery
Batteries
Charging
Crystallography
Electrode materials
Electrodeposition
Electrodes
Electrolytic cells
Energy storage
Fast charging
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ion diffusion
Lithium
Manganese dioxide
Metals
Modelling
Rechargeable batteries
Renewable energy
Reversibility
Smart grid
Storage batteries
Ultrafast metal
Zinc
Zinc sulfate
Zn Anode
Zn battery
title Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Metal%20Electrodeposition%20Revealed%20by%20In%20Situ%20Optical%20Imaging%20and%20Theoretical%20Modeling%20towards%20Fast%E2%80%90Charging%20Zn%20Battery%20Chemistry&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Cai,%20Zhao&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-03-28&rft.volume=61&rft.issue=14&rft.spage=e202116560&rft.epage=n/a&rft.pages=e202116560-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202116560&rft_dat=%3Cproquest_osti_%3E2640952480%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640952480&rft_id=info:pmid/35088500&rfr_iscdi=true