Nanoscale covariance magnetometry with diamond quantum sensors

Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2022-12, Vol.378 (6626), p.1301-1305
Hauptverfasser: Rovny, Jared, Yuan, Zhiyang, Fitzpatrick, Mattias, Abdalla, Ahmed I, Futamura, Laura, Fox, Carter, Cambria, Matthew Carl, Kolkowitz, Shimon, de Leon, Nathalie P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1305
container_issue 6626
container_start_page 1301
container_title Science (American Association for the Advancement of Science)
container_volume 378
creator Rovny, Jared
Yuan, Zhiyang
Fitzpatrick, Mattias
Abdalla, Ahmed I
Futamura, Laura
Fox, Carter
Cambria, Matthew Carl
Kolkowitz, Shimon
de Leon, Nathalie P
description Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.
doi_str_mv 10.1126/science.ade9858
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1909168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758107387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-193f45bdb786398a3f399f8f21b76b8353d4263ba4f7ccdae4e236fac6e9b8c83</originalsourceid><addsrcrecordid>eNpd0LtPwzAQBnALgaA8ZjYUwcKSYucSPxYkhHhJFSwwW45zgaDGbm0H1P-eVC0MTDfc7z7pPkJOGZ0yVvCraDt0FqemQSUruUMmjKoqVwWFXTKhFHguqagOyGGMn5SOOwX75AB4VcqSygm5fjbOR2vmmFn_ZUJnxrisN-8Ok-8xhVX23aWPrOlM712TLQfj0tBnEV30IR6TvdbMI55s5xF5u797vX3MZy8PT7c3s9xCVaScKWjLqm5qITkoaaAFpVrZFqwWvJZQQVMWHGpTtsLaxmCJBfDWWI6qllbCETnf5PqYOj1-ndB-WO8c2qSZoorxNbrcoEXwywFj0n0XLc7nxqEfoi5EJRkVIMVIL_7RTz8EN76wVoIBLwSM6mqjbPAxBmz1InS9CSvNqF73r7f9623_48XZNneoe2z-_G_h8APGlYLj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757136273</pqid></control><display><type>article</type><title>Nanoscale covariance magnetometry with diamond quantum sensors</title><source>Science Magazine</source><creator>Rovny, Jared ; Yuan, Zhiyang ; Fitzpatrick, Mattias ; Abdalla, Ahmed I ; Futamura, Laura ; Fox, Carter ; Cambria, Matthew Carl ; Kolkowitz, Shimon ; de Leon, Nathalie P</creator><creatorcontrib>Rovny, Jared ; Yuan, Zhiyang ; Fitzpatrick, Mattias ; Abdalla, Ahmed I ; Futamura, Laura ; Fox, Carter ; Cambria, Matthew Carl ; Kolkowitz, Shimon ; de Leon, Nathalie P ; Princeton Univ., NJ (United States)</creatorcontrib><description>Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.ade9858</identifier><identifier>PMID: 36548408</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Covariance ; Diamonds ; Magnetic fields ; Magnetic measurement ; Nitrogen ; Nitrogen defects ; OTHER INSTRUMENTATION ; Quantum sensors</subject><ispartof>Science (American Association for the Advancement of Science), 2022-12, Vol.378 (6626), p.1301-1305</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-193f45bdb786398a3f399f8f21b76b8353d4263ba4f7ccdae4e236fac6e9b8c83</citedby><cites>FETCH-LOGICAL-c352t-193f45bdb786398a3f399f8f21b76b8353d4263ba4f7ccdae4e236fac6e9b8c83</cites><orcidid>0000-0001-7095-1547 ; 0000-0003-4461-1156 ; 0000-0001-5365-2449 ; 0000-0003-1324-1412 ; 0000-0003-2906-6241 ; 0000-0002-5547-0128 ; 0000-0001-8316-9482 ; 0000000344611156 ; 0000000170951547 ; 0000000153652449 ; 0000000183169482 ; 0000000329066241 ; 0000000255470128 ; 0000000313241412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36548408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1909168$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rovny, Jared</creatorcontrib><creatorcontrib>Yuan, Zhiyang</creatorcontrib><creatorcontrib>Fitzpatrick, Mattias</creatorcontrib><creatorcontrib>Abdalla, Ahmed I</creatorcontrib><creatorcontrib>Futamura, Laura</creatorcontrib><creatorcontrib>Fox, Carter</creatorcontrib><creatorcontrib>Cambria, Matthew Carl</creatorcontrib><creatorcontrib>Kolkowitz, Shimon</creatorcontrib><creatorcontrib>de Leon, Nathalie P</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Nanoscale covariance magnetometry with diamond quantum sensors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.</description><subject>Covariance</subject><subject>Diamonds</subject><subject>Magnetic fields</subject><subject>Magnetic measurement</subject><subject>Nitrogen</subject><subject>Nitrogen defects</subject><subject>OTHER INSTRUMENTATION</subject><subject>Quantum sensors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0LtPwzAQBnALgaA8ZjYUwcKSYucSPxYkhHhJFSwwW45zgaDGbm0H1P-eVC0MTDfc7z7pPkJOGZ0yVvCraDt0FqemQSUruUMmjKoqVwWFXTKhFHguqagOyGGMn5SOOwX75AB4VcqSygm5fjbOR2vmmFn_ZUJnxrisN-8Ok-8xhVX23aWPrOlM712TLQfj0tBnEV30IR6TvdbMI55s5xF5u797vX3MZy8PT7c3s9xCVaScKWjLqm5qITkoaaAFpVrZFqwWvJZQQVMWHGpTtsLaxmCJBfDWWI6qllbCETnf5PqYOj1-ndB-WO8c2qSZoorxNbrcoEXwywFj0n0XLc7nxqEfoi5EJRkVIMVIL_7RTz8EN76wVoIBLwSM6mqjbPAxBmz1InS9CSvNqF73r7f9623_48XZNneoe2z-_G_h8APGlYLj</recordid><startdate>20221223</startdate><enddate>20221223</enddate><creator>Rovny, Jared</creator><creator>Yuan, Zhiyang</creator><creator>Fitzpatrick, Mattias</creator><creator>Abdalla, Ahmed I</creator><creator>Futamura, Laura</creator><creator>Fox, Carter</creator><creator>Cambria, Matthew Carl</creator><creator>Kolkowitz, Shimon</creator><creator>de Leon, Nathalie P</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7095-1547</orcidid><orcidid>https://orcid.org/0000-0003-4461-1156</orcidid><orcidid>https://orcid.org/0000-0001-5365-2449</orcidid><orcidid>https://orcid.org/0000-0003-1324-1412</orcidid><orcidid>https://orcid.org/0000-0003-2906-6241</orcidid><orcidid>https://orcid.org/0000-0002-5547-0128</orcidid><orcidid>https://orcid.org/0000-0001-8316-9482</orcidid><orcidid>https://orcid.org/0000000344611156</orcidid><orcidid>https://orcid.org/0000000170951547</orcidid><orcidid>https://orcid.org/0000000153652449</orcidid><orcidid>https://orcid.org/0000000183169482</orcidid><orcidid>https://orcid.org/0000000329066241</orcidid><orcidid>https://orcid.org/0000000255470128</orcidid><orcidid>https://orcid.org/0000000313241412</orcidid></search><sort><creationdate>20221223</creationdate><title>Nanoscale covariance magnetometry with diamond quantum sensors</title><author>Rovny, Jared ; Yuan, Zhiyang ; Fitzpatrick, Mattias ; Abdalla, Ahmed I ; Futamura, Laura ; Fox, Carter ; Cambria, Matthew Carl ; Kolkowitz, Shimon ; de Leon, Nathalie P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-193f45bdb786398a3f399f8f21b76b8353d4263ba4f7ccdae4e236fac6e9b8c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Covariance</topic><topic>Diamonds</topic><topic>Magnetic fields</topic><topic>Magnetic measurement</topic><topic>Nitrogen</topic><topic>Nitrogen defects</topic><topic>OTHER INSTRUMENTATION</topic><topic>Quantum sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rovny, Jared</creatorcontrib><creatorcontrib>Yuan, Zhiyang</creatorcontrib><creatorcontrib>Fitzpatrick, Mattias</creatorcontrib><creatorcontrib>Abdalla, Ahmed I</creatorcontrib><creatorcontrib>Futamura, Laura</creatorcontrib><creatorcontrib>Fox, Carter</creatorcontrib><creatorcontrib>Cambria, Matthew Carl</creatorcontrib><creatorcontrib>Kolkowitz, Shimon</creatorcontrib><creatorcontrib>de Leon, Nathalie P</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rovny, Jared</au><au>Yuan, Zhiyang</au><au>Fitzpatrick, Mattias</au><au>Abdalla, Ahmed I</au><au>Futamura, Laura</au><au>Fox, Carter</au><au>Cambria, Matthew Carl</au><au>Kolkowitz, Shimon</au><au>de Leon, Nathalie P</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale covariance magnetometry with diamond quantum sensors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2022-12-23</date><risdate>2022</risdate><volume>378</volume><issue>6626</issue><spage>1301</spage><epage>1305</epage><pages>1301-1305</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>36548408</pmid><doi>10.1126/science.ade9858</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7095-1547</orcidid><orcidid>https://orcid.org/0000-0003-4461-1156</orcidid><orcidid>https://orcid.org/0000-0001-5365-2449</orcidid><orcidid>https://orcid.org/0000-0003-1324-1412</orcidid><orcidid>https://orcid.org/0000-0003-2906-6241</orcidid><orcidid>https://orcid.org/0000-0002-5547-0128</orcidid><orcidid>https://orcid.org/0000-0001-8316-9482</orcidid><orcidid>https://orcid.org/0000000344611156</orcidid><orcidid>https://orcid.org/0000000170951547</orcidid><orcidid>https://orcid.org/0000000153652449</orcidid><orcidid>https://orcid.org/0000000183169482</orcidid><orcidid>https://orcid.org/0000000329066241</orcidid><orcidid>https://orcid.org/0000000255470128</orcidid><orcidid>https://orcid.org/0000000313241412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2022-12, Vol.378 (6626), p.1301-1305
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1909168
source Science Magazine
subjects Covariance
Diamonds
Magnetic fields
Magnetic measurement
Nitrogen
Nitrogen defects
OTHER INSTRUMENTATION
Quantum sensors
title Nanoscale covariance magnetometry with diamond quantum sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20covariance%20magnetometry%20with%20diamond%20quantum%20sensors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Rovny,%20Jared&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2022-12-23&rft.volume=378&rft.issue=6626&rft.spage=1301&rft.epage=1305&rft.pages=1301-1305&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.ade9858&rft_dat=%3Cproquest_osti_%3E2758107387%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757136273&rft_id=info:pmid/36548408&rfr_iscdi=true