Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics

Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2023-01, Vol.11 (3), p.965-978
Hauptverfasser: Uekert, Taylor, Singh, Avantika, DesVeaux, Jason S., Ghosh, Tapajyoti, Bhatt, Arpit, Yadav, Geetanjali, Afzal, Shaik, Walzberg, Julien, Knauer, Katrina M., Nicholson, Scott R., Beckham, Gregg T., Carpenter, Alberta C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 3
container_start_page 965
container_title ACS sustainable chemistry & engineering
container_volume 11
creator Uekert, Taylor
Singh, Avantika
DesVeaux, Jason S.
Ghosh, Tapajyoti
Bhatt, Arpit
Yadav, Geetanjali
Afzal, Shaik
Walzberg, Julien
Knauer, Katrina M.
Nicholson, Scott R.
Beckham, Gregg T.
Carpenter, Alberta C.
description Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we develop a data set of material quality, material retention, circularity, contamination tolerance, minimum selling price, greenhouse gas emissions, energy use, land use, toxicity, waste generation, and water use metrics for closed-loop polymer recycling technologies, including mechanical recycling and solvent-based dissolution of polyethylene, polyethylene terephthalate (PET), and polypropylene, as well as enzymatic hydrolysis, glycolysis, and vapor methanolysis of PET. Mechanical recycling and PET glycolysis display the best economic (9%–73% lower than competing technologies) and environmental (7%–88% lower) performances, while dissolution, enzymatic hydrolysis, and methanolysis provide the best recyclate material qualities (2%–27% higher). We identify electricity, steam, and organic solvents as top process contributors to these metrics and apply sensitivity and multicriteria decision analyses to highlight key future research areas. The estimates derived in this work provide a quantitative baseline for comparing and improving recycling technologies, can help reclaimers identify optimal end-of-life routes for given waste streams, and serve as a framework for assessing future innovations.
doi_str_mv 10.1021/acssuschemeng.2c05497
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1909055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a707046139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-7dd96cd6a486ec95335653cf930e455d30a066ca000da3ddd157af988367fd903</originalsourceid><addsrcrecordid>eNqFkM1qAyEUhaW00JDmEQrSdSbVcXTGZQnpDwRaSroWuTqJ6YwGnRTy9jVNFu2qbhQ837n3HIRuKZlRUtJ7DSntE2xsb_16VgLhlawv0KikoilI1fDLX-9rNElpS_KRkpUNHaHPlYWNd6C7KV5A8KF3MMXaG7zwXy4Gn20H3eF56Hc6uhQ8Di2edyFZUyxD2OF3CwfonF_jH6vQhbWzCbchHqE-A2-dToODdIOuWt0lOznfY_TxuFjNn4vl69PL_GFZaCbkUNTGSAFG6KoRFiRnjAvOoJWM2Ipzw4gmQoDOKYxmxhjKa93KpmGibo0kbIzuTr4hj1UJ3JAXy9m8hUFRSSThPIv4SQQxpBRtq3bR9ToeFCXq2Kz606w6N5s5euLyt9qGffQ5yj_MN5K6gl0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics</title><source>American Chemical Society Journals</source><creator>Uekert, Taylor ; Singh, Avantika ; DesVeaux, Jason S. ; Ghosh, Tapajyoti ; Bhatt, Arpit ; Yadav, Geetanjali ; Afzal, Shaik ; Walzberg, Julien ; Knauer, Katrina M. ; Nicholson, Scott R. ; Beckham, Gregg T. ; Carpenter, Alberta C.</creator><creatorcontrib>Uekert, Taylor ; Singh, Avantika ; DesVeaux, Jason S. ; Ghosh, Tapajyoti ; Bhatt, Arpit ; Yadav, Geetanjali ; Afzal, Shaik ; Walzberg, Julien ; Knauer, Katrina M. ; Nicholson, Scott R. ; Beckham, Gregg T. ; Carpenter, Alberta C.</creatorcontrib><description>Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we develop a data set of material quality, material retention, circularity, contamination tolerance, minimum selling price, greenhouse gas emissions, energy use, land use, toxicity, waste generation, and water use metrics for closed-loop polymer recycling technologies, including mechanical recycling and solvent-based dissolution of polyethylene, polyethylene terephthalate (PET), and polypropylene, as well as enzymatic hydrolysis, glycolysis, and vapor methanolysis of PET. Mechanical recycling and PET glycolysis display the best economic (9%–73% lower than competing technologies) and environmental (7%–88% lower) performances, while dissolution, enzymatic hydrolysis, and methanolysis provide the best recyclate material qualities (2%–27% higher). We identify electricity, steam, and organic solvents as top process contributors to these metrics and apply sensitivity and multicriteria decision analyses to highlight key future research areas. The estimates derived in this work provide a quantitative baseline for comparing and improving recycling technologies, can help reclaimers identify optimal end-of-life routes for given waste streams, and serve as a framework for assessing future innovations.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.2c05497</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2023-01, Vol.11 (3), p.965-978</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-7dd96cd6a486ec95335653cf930e455d30a066ca000da3ddd157af988367fd903</citedby><cites>FETCH-LOGICAL-a369t-7dd96cd6a486ec95335653cf930e455d30a066ca000da3ddd157af988367fd903</cites><orcidid>0000-0001-7645-9166 ; 0000-0002-3480-212X ; 0000-0002-3780-1800 ; 000000023480212X ; 0000000176459166 ; 0000000237801800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.2c05497$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.2c05497$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1909055$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Uekert, Taylor</creatorcontrib><creatorcontrib>Singh, Avantika</creatorcontrib><creatorcontrib>DesVeaux, Jason S.</creatorcontrib><creatorcontrib>Ghosh, Tapajyoti</creatorcontrib><creatorcontrib>Bhatt, Arpit</creatorcontrib><creatorcontrib>Yadav, Geetanjali</creatorcontrib><creatorcontrib>Afzal, Shaik</creatorcontrib><creatorcontrib>Walzberg, Julien</creatorcontrib><creatorcontrib>Knauer, Katrina M.</creatorcontrib><creatorcontrib>Nicholson, Scott R.</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><creatorcontrib>Carpenter, Alberta C.</creatorcontrib><title>Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we develop a data set of material quality, material retention, circularity, contamination tolerance, minimum selling price, greenhouse gas emissions, energy use, land use, toxicity, waste generation, and water use metrics for closed-loop polymer recycling technologies, including mechanical recycling and solvent-based dissolution of polyethylene, polyethylene terephthalate (PET), and polypropylene, as well as enzymatic hydrolysis, glycolysis, and vapor methanolysis of PET. Mechanical recycling and PET glycolysis display the best economic (9%–73% lower than competing technologies) and environmental (7%–88% lower) performances, while dissolution, enzymatic hydrolysis, and methanolysis provide the best recyclate material qualities (2%–27% higher). We identify electricity, steam, and organic solvents as top process contributors to these metrics and apply sensitivity and multicriteria decision analyses to highlight key future research areas. The estimates derived in this work provide a quantitative baseline for comparing and improving recycling technologies, can help reclaimers identify optimal end-of-life routes for given waste streams, and serve as a framework for assessing future innovations.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1qAyEUhaW00JDmEQrSdSbVcXTGZQnpDwRaSroWuTqJ6YwGnRTy9jVNFu2qbhQ837n3HIRuKZlRUtJ7DSntE2xsb_16VgLhlawv0KikoilI1fDLX-9rNElpS_KRkpUNHaHPlYWNd6C7KV5A8KF3MMXaG7zwXy4Gn20H3eF56Hc6uhQ8Di2edyFZUyxD2OF3CwfonF_jH6vQhbWzCbchHqE-A2-dToODdIOuWt0lOznfY_TxuFjNn4vl69PL_GFZaCbkUNTGSAFG6KoRFiRnjAvOoJWM2Ipzw4gmQoDOKYxmxhjKa93KpmGibo0kbIzuTr4hj1UJ3JAXy9m8hUFRSSThPIv4SQQxpBRtq3bR9ToeFCXq2Kz606w6N5s5euLyt9qGffQ5yj_MN5K6gl0</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Uekert, Taylor</creator><creator>Singh, Avantika</creator><creator>DesVeaux, Jason S.</creator><creator>Ghosh, Tapajyoti</creator><creator>Bhatt, Arpit</creator><creator>Yadav, Geetanjali</creator><creator>Afzal, Shaik</creator><creator>Walzberg, Julien</creator><creator>Knauer, Katrina M.</creator><creator>Nicholson, Scott R.</creator><creator>Beckham, Gregg T.</creator><creator>Carpenter, Alberta C.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7645-9166</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0002-3780-1800</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid><orcidid>https://orcid.org/0000000176459166</orcidid><orcidid>https://orcid.org/0000000237801800</orcidid></search><sort><creationdate>20230123</creationdate><title>Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics</title><author>Uekert, Taylor ; Singh, Avantika ; DesVeaux, Jason S. ; Ghosh, Tapajyoti ; Bhatt, Arpit ; Yadav, Geetanjali ; Afzal, Shaik ; Walzberg, Julien ; Knauer, Katrina M. ; Nicholson, Scott R. ; Beckham, Gregg T. ; Carpenter, Alberta C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-7dd96cd6a486ec95335653cf930e455d30a066ca000da3ddd157af988367fd903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uekert, Taylor</creatorcontrib><creatorcontrib>Singh, Avantika</creatorcontrib><creatorcontrib>DesVeaux, Jason S.</creatorcontrib><creatorcontrib>Ghosh, Tapajyoti</creatorcontrib><creatorcontrib>Bhatt, Arpit</creatorcontrib><creatorcontrib>Yadav, Geetanjali</creatorcontrib><creatorcontrib>Afzal, Shaik</creatorcontrib><creatorcontrib>Walzberg, Julien</creatorcontrib><creatorcontrib>Knauer, Katrina M.</creatorcontrib><creatorcontrib>Nicholson, Scott R.</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><creatorcontrib>Carpenter, Alberta C.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uekert, Taylor</au><au>Singh, Avantika</au><au>DesVeaux, Jason S.</au><au>Ghosh, Tapajyoti</au><au>Bhatt, Arpit</au><au>Yadav, Geetanjali</au><au>Afzal, Shaik</au><au>Walzberg, Julien</au><au>Knauer, Katrina M.</au><au>Nicholson, Scott R.</au><au>Beckham, Gregg T.</au><au>Carpenter, Alberta C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2023-01-23</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>965</spage><epage>978</epage><pages>965-978</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Over 400 million metric tons of plastic waste are generated globally each year, resulting in pollution and lost resources. Recycling strategies can recapture this wasted material, but there is a lack of quantitative and transparent data on the capabilities and impacts of these processes. Here, we develop a data set of material quality, material retention, circularity, contamination tolerance, minimum selling price, greenhouse gas emissions, energy use, land use, toxicity, waste generation, and water use metrics for closed-loop polymer recycling technologies, including mechanical recycling and solvent-based dissolution of polyethylene, polyethylene terephthalate (PET), and polypropylene, as well as enzymatic hydrolysis, glycolysis, and vapor methanolysis of PET. Mechanical recycling and PET glycolysis display the best economic (9%–73% lower than competing technologies) and environmental (7%–88% lower) performances, while dissolution, enzymatic hydrolysis, and methanolysis provide the best recyclate material qualities (2%–27% higher). We identify electricity, steam, and organic solvents as top process contributors to these metrics and apply sensitivity and multicriteria decision analyses to highlight key future research areas. The estimates derived in this work provide a quantitative baseline for comparing and improving recycling technologies, can help reclaimers identify optimal end-of-life routes for given waste streams, and serve as a framework for assessing future innovations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.2c05497</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7645-9166</orcidid><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><orcidid>https://orcid.org/0000-0002-3780-1800</orcidid><orcidid>https://orcid.org/000000023480212X</orcidid><orcidid>https://orcid.org/0000000176459166</orcidid><orcidid>https://orcid.org/0000000237801800</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2023-01, Vol.11 (3), p.965-978
issn 2168-0485
2168-0485
language eng
recordid cdi_osti_scitechconnect_1909055
source American Chemical Society Journals
title Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Technical,%20Economic,%20and%20Environmental%20Comparison%20of%20Closed-Loop%20Recycling%20Technologies%20for%20Common%20Plastics&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Uekert,%20Taylor&rft.date=2023-01-23&rft.volume=11&rft.issue=3&rft.spage=965&rft.epage=978&rft.pages=965-978&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.2c05497&rft_dat=%3Cacs_osti_%3Ea707046139%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true