Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode

Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2022-07, Vol.61 (30), p.e202202894-n/a
Hauptverfasser: Xu, Hanying, Li, Zhanping, Liu, Tongchao, Han, Ce, Guo, Chong, Zhao, He, Li, Qin, Lu, Jun, Amine, Khalil, Qiu, Xinping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 30
container_start_page e202202894
container_title Angewandte Chemie (International ed.)
container_volume 61
creator Xu, Hanying
Li, Zhanping
Liu, Tongchao
Han, Ce
Guo, Chong
Zhao, He
Li, Qin
Lu, Jun
Amine, Khalil
Qiu, Xinping
description Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity. Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.
doi_str_mv 10.1002/anie.202202894
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1909024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652863752</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2634-1a555f1e5d6aee80c3b3a60fbf5f423dee619c3ed55d52d93b52f5778c6a36953</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AiCs7p1XPQiyCd-dGk6XHMOQtjIuo5ZOkrzcia2nTK_nszJh6EwEvIh8d7fJPkmuAJwZg-6NbChGIajyyyk2REOCUpy3N2Gu8ZY2kuOTlPLkLYRC8lFqPktdx22gwB-Ro92hC8-4IKrSy9R75FQwPozTtbobkDM_Te7QdAZTtA3zU6wMFotOh119j4MW19BZfJWa1dgKvfOk4-nubvs-d0-bIoZ9Nl6qlgWUo057wmwCuhASQ2bM20wPW65nVGWQUgSGEYVJxXnFYFW3Na8zyXRmgmCs7Gyc2xrw-DVcHEAUxjfNvGQRUpcIFpFtHdEXW9_9xBGNTWBgPO6Rb8LigqOJWC5ZxGevuPbvyub-MKUcV2EsuMRFUc1bd1sFddb7e63yuC1SEDdchA_WWgpqty_vdiP6yeeu8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690980841</pqid></control><display><type>article</type><title>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</title><source>Access via Wiley Online Library</source><creator>Xu, Hanying ; Li, Zhanping ; Liu, Tongchao ; Han, Ce ; Guo, Chong ; Zhao, He ; Li, Qin ; Lu, Jun ; Amine, Khalil ; Qiu, Xinping</creator><creatorcontrib>Xu, Hanying ; Li, Zhanping ; Liu, Tongchao ; Han, Ce ; Guo, Chong ; Zhao, He ; Li, Qin ; Lu, Jun ; Amine, Khalil ; Qiu, Xinping ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity. Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202202894</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aging ; Anodes ; Anodic dissolution ; Batteries ; Cathodes ; Cathodic dissolution ; Dissolution ; ENERGY STORAGE ; Failure mechanisms ; Geographical distribution ; Graphite ; Interphase ; Ions ; Lithium ; Lithium-Ion Batteries ; lithium-ion battery ; Mass spectroscopy ; MCR Analysis ; Ni Dissolution ; Secondary ion mass spectroscopy ; SEI Structure ; Solid electrolytes ; Species ; TOF-SIMS ; Transition metals</subject><ispartof>Angewandte Chemie (International ed.), 2022-07, Vol.61 (30), p.e202202894-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7102-8428 ; 0000-0003-0858-8577 ; 0000-0001-5291-7943 ; 0000000152917943 ; 0000000271028428 ; 0000000308588577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202202894$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202202894$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1909024$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Hanying</creatorcontrib><creatorcontrib>Li, Zhanping</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Han, Ce</creatorcontrib><creatorcontrib>Guo, Chong</creatorcontrib><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Qiu, Xinping</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</title><title>Angewandte Chemie (International ed.)</title><description>Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity. Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.</description><subject>Aging</subject><subject>Anodes</subject><subject>Anodic dissolution</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic dissolution</subject><subject>Dissolution</subject><subject>ENERGY STORAGE</subject><subject>Failure mechanisms</subject><subject>Geographical distribution</subject><subject>Graphite</subject><subject>Interphase</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium-Ion Batteries</subject><subject>lithium-ion battery</subject><subject>Mass spectroscopy</subject><subject>MCR Analysis</subject><subject>Ni Dissolution</subject><subject>Secondary ion mass spectroscopy</subject><subject>SEI Structure</subject><subject>Solid electrolytes</subject><subject>Species</subject><subject>TOF-SIMS</subject><subject>Transition metals</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AiCs7p1XPQiyCd-dGk6XHMOQtjIuo5ZOkrzcia2nTK_nszJh6EwEvIh8d7fJPkmuAJwZg-6NbChGIajyyyk2REOCUpy3N2Gu8ZY2kuOTlPLkLYRC8lFqPktdx22gwB-Ro92hC8-4IKrSy9R75FQwPozTtbobkDM_Te7QdAZTtA3zU6wMFotOh119j4MW19BZfJWa1dgKvfOk4-nubvs-d0-bIoZ9Nl6qlgWUo057wmwCuhASQ2bM20wPW65nVGWQUgSGEYVJxXnFYFW3Na8zyXRmgmCs7Gyc2xrw-DVcHEAUxjfNvGQRUpcIFpFtHdEXW9_9xBGNTWBgPO6Rb8LigqOJWC5ZxGevuPbvyub-MKUcV2EsuMRFUc1bd1sFddb7e63yuC1SEDdchA_WWgpqty_vdiP6yeeu8</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Xu, Hanying</creator><creator>Li, Zhanping</creator><creator>Liu, Tongchao</creator><creator>Han, Ce</creator><creator>Guo, Chong</creator><creator>Zhao, He</creator><creator>Li, Qin</creator><creator>Lu, Jun</creator><creator>Amine, Khalil</creator><creator>Qiu, Xinping</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7102-8428</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0001-5291-7943</orcidid><orcidid>https://orcid.org/0000000152917943</orcidid><orcidid>https://orcid.org/0000000271028428</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid></search><sort><creationdate>20220725</creationdate><title>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</title><author>Xu, Hanying ; Li, Zhanping ; Liu, Tongchao ; Han, Ce ; Guo, Chong ; Zhao, He ; Li, Qin ; Lu, Jun ; Amine, Khalil ; Qiu, Xinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2634-1a555f1e5d6aee80c3b3a60fbf5f423dee619c3ed55d52d93b52f5778c6a36953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Anodes</topic><topic>Anodic dissolution</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic dissolution</topic><topic>Dissolution</topic><topic>ENERGY STORAGE</topic><topic>Failure mechanisms</topic><topic>Geographical distribution</topic><topic>Graphite</topic><topic>Interphase</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium-Ion Batteries</topic><topic>lithium-ion battery</topic><topic>Mass spectroscopy</topic><topic>MCR Analysis</topic><topic>Ni Dissolution</topic><topic>Secondary ion mass spectroscopy</topic><topic>SEI Structure</topic><topic>Solid electrolytes</topic><topic>Species</topic><topic>TOF-SIMS</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hanying</creatorcontrib><creatorcontrib>Li, Zhanping</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Han, Ce</creatorcontrib><creatorcontrib>Guo, Chong</creatorcontrib><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Qiu, Xinping</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hanying</au><au>Li, Zhanping</au><au>Liu, Tongchao</au><au>Han, Ce</au><au>Guo, Chong</au><au>Zhao, He</au><au>Li, Qin</au><au>Lu, Jun</au><au>Amine, Khalil</au><au>Qiu, Xinping</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>61</volume><issue>30</issue><spage>e202202894</spage><epage>n/a</epage><pages>e202202894-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity. Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202202894</doi><tpages>11</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7102-8428</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0001-5291-7943</orcidid><orcidid>https://orcid.org/0000000152917943</orcidid><orcidid>https://orcid.org/0000000271028428</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2022-07, Vol.61 (30), p.e202202894-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1909024
source Access via Wiley Online Library
subjects Aging
Anodes
Anodic dissolution
Batteries
Cathodes
Cathodic dissolution
Dissolution
ENERGY STORAGE
Failure mechanisms
Geographical distribution
Graphite
Interphase
Ions
Lithium
Lithium-Ion Batteries
lithium-ion battery
Mass spectroscopy
MCR Analysis
Ni Dissolution
Secondary ion mass spectroscopy
SEI Structure
Solid electrolytes
Species
TOF-SIMS
Transition metals
title Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Dissolved%20Ni2+%20on%20the%20Solid%20Electrolyte%20Interphase%20on%20a%20Graphite%20Anode&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Xu,%20Hanying&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-07-25&rft.volume=61&rft.issue=30&rft.spage=e202202894&rft.epage=n/a&rft.pages=e202202894-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202202894&rft_dat=%3Cproquest_osti_%3E2652863752%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690980841&rft_id=info:pmid/&rfr_iscdi=true