Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode
Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2022-07, Vol.61 (30), p.e202202894-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 30 |
container_start_page | e202202894 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 61 |
creator | Xu, Hanying Li, Zhanping Liu, Tongchao Han, Ce Guo, Chong Zhao, He Li, Qin Lu, Jun Amine, Khalil Qiu, Xinping |
description | Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity.
Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found. |
doi_str_mv | 10.1002/anie.202202894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1909024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652863752</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2634-1a555f1e5d6aee80c3b3a60fbf5f423dee619c3ed55d52d93b52f5778c6a36953</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AiCs7p1XPQiyCd-dGk6XHMOQtjIuo5ZOkrzcia2nTK_nszJh6EwEvIh8d7fJPkmuAJwZg-6NbChGIajyyyk2REOCUpy3N2Gu8ZY2kuOTlPLkLYRC8lFqPktdx22gwB-Ro92hC8-4IKrSy9R75FQwPozTtbobkDM_Te7QdAZTtA3zU6wMFotOh119j4MW19BZfJWa1dgKvfOk4-nubvs-d0-bIoZ9Nl6qlgWUo057wmwCuhASQ2bM20wPW65nVGWQUgSGEYVJxXnFYFW3Na8zyXRmgmCs7Gyc2xrw-DVcHEAUxjfNvGQRUpcIFpFtHdEXW9_9xBGNTWBgPO6Rb8LigqOJWC5ZxGevuPbvyub-MKUcV2EsuMRFUc1bd1sFddb7e63yuC1SEDdchA_WWgpqty_vdiP6yeeu8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690980841</pqid></control><display><type>article</type><title>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</title><source>Access via Wiley Online Library</source><creator>Xu, Hanying ; Li, Zhanping ; Liu, Tongchao ; Han, Ce ; Guo, Chong ; Zhao, He ; Li, Qin ; Lu, Jun ; Amine, Khalil ; Qiu, Xinping</creator><creatorcontrib>Xu, Hanying ; Li, Zhanping ; Liu, Tongchao ; Han, Ce ; Guo, Chong ; Zhao, He ; Li, Qin ; Lu, Jun ; Amine, Khalil ; Qiu, Xinping ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity.
Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202202894</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aging ; Anodes ; Anodic dissolution ; Batteries ; Cathodes ; Cathodic dissolution ; Dissolution ; ENERGY STORAGE ; Failure mechanisms ; Geographical distribution ; Graphite ; Interphase ; Ions ; Lithium ; Lithium-Ion Batteries ; lithium-ion battery ; Mass spectroscopy ; MCR Analysis ; Ni Dissolution ; Secondary ion mass spectroscopy ; SEI Structure ; Solid electrolytes ; Species ; TOF-SIMS ; Transition metals</subject><ispartof>Angewandte Chemie (International ed.), 2022-07, Vol.61 (30), p.e202202894-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7102-8428 ; 0000-0003-0858-8577 ; 0000-0001-5291-7943 ; 0000000152917943 ; 0000000271028428 ; 0000000308588577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202202894$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202202894$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1909024$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Hanying</creatorcontrib><creatorcontrib>Li, Zhanping</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Han, Ce</creatorcontrib><creatorcontrib>Guo, Chong</creatorcontrib><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Qiu, Xinping</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</title><title>Angewandte Chemie (International ed.)</title><description>Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity.
Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.</description><subject>Aging</subject><subject>Anodes</subject><subject>Anodic dissolution</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic dissolution</subject><subject>Dissolution</subject><subject>ENERGY STORAGE</subject><subject>Failure mechanisms</subject><subject>Geographical distribution</subject><subject>Graphite</subject><subject>Interphase</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium-Ion Batteries</subject><subject>lithium-ion battery</subject><subject>Mass spectroscopy</subject><subject>MCR Analysis</subject><subject>Ni Dissolution</subject><subject>Secondary ion mass spectroscopy</subject><subject>SEI Structure</subject><subject>Solid electrolytes</subject><subject>Species</subject><subject>TOF-SIMS</subject><subject>Transition metals</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AiCs7p1XPQiyCd-dGk6XHMOQtjIuo5ZOkrzcia2nTK_nszJh6EwEvIh8d7fJPkmuAJwZg-6NbChGIajyyyk2REOCUpy3N2Gu8ZY2kuOTlPLkLYRC8lFqPktdx22gwB-Ro92hC8-4IKrSy9R75FQwPozTtbobkDM_Te7QdAZTtA3zU6wMFotOh119j4MW19BZfJWa1dgKvfOk4-nubvs-d0-bIoZ9Nl6qlgWUo057wmwCuhASQ2bM20wPW65nVGWQUgSGEYVJxXnFYFW3Na8zyXRmgmCs7Gyc2xrw-DVcHEAUxjfNvGQRUpcIFpFtHdEXW9_9xBGNTWBgPO6Rb8LigqOJWC5ZxGevuPbvyub-MKUcV2EsuMRFUc1bd1sFddb7e63yuC1SEDdchA_WWgpqty_vdiP6yeeu8</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Xu, Hanying</creator><creator>Li, Zhanping</creator><creator>Liu, Tongchao</creator><creator>Han, Ce</creator><creator>Guo, Chong</creator><creator>Zhao, He</creator><creator>Li, Qin</creator><creator>Lu, Jun</creator><creator>Amine, Khalil</creator><creator>Qiu, Xinping</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7102-8428</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0001-5291-7943</orcidid><orcidid>https://orcid.org/0000000152917943</orcidid><orcidid>https://orcid.org/0000000271028428</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid></search><sort><creationdate>20220725</creationdate><title>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</title><author>Xu, Hanying ; Li, Zhanping ; Liu, Tongchao ; Han, Ce ; Guo, Chong ; Zhao, He ; Li, Qin ; Lu, Jun ; Amine, Khalil ; Qiu, Xinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2634-1a555f1e5d6aee80c3b3a60fbf5f423dee619c3ed55d52d93b52f5778c6a36953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aging</topic><topic>Anodes</topic><topic>Anodic dissolution</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic dissolution</topic><topic>Dissolution</topic><topic>ENERGY STORAGE</topic><topic>Failure mechanisms</topic><topic>Geographical distribution</topic><topic>Graphite</topic><topic>Interphase</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium-Ion Batteries</topic><topic>lithium-ion battery</topic><topic>Mass spectroscopy</topic><topic>MCR Analysis</topic><topic>Ni Dissolution</topic><topic>Secondary ion mass spectroscopy</topic><topic>SEI Structure</topic><topic>Solid electrolytes</topic><topic>Species</topic><topic>TOF-SIMS</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hanying</creatorcontrib><creatorcontrib>Li, Zhanping</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Han, Ce</creatorcontrib><creatorcontrib>Guo, Chong</creatorcontrib><creatorcontrib>Zhao, He</creatorcontrib><creatorcontrib>Li, Qin</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Qiu, Xinping</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hanying</au><au>Li, Zhanping</au><au>Liu, Tongchao</au><au>Han, Ce</au><au>Guo, Chong</au><au>Zhao, He</au><au>Li, Qin</au><au>Lu, Jun</au><au>Amine, Khalil</au><au>Qiu, Xinping</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>61</volume><issue>30</issue><spage>e202202894</spage><epage>n/a</epage><pages>e202202894-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Transition metal (e.g. Ni) ions dissolved from layered‐structured Ni‐rich cathodes can migrate to the anode side and accelerate the failure of lithium‐ion batteries. The investigations of the impact and distribution of Ni species on the solid electrolyte interphase (SEI) on the anode are crucial to understand the failure mechanism. Herein, we used time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS) coupled with multivariate curve resolution (MCR) analysis to intuitively characterize the distribution of Ni species in the SEI. We find that the SEI on the graphite electrode using an EC‐based electrolyte exhibits a multi‐stratum structure. During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling. A strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is illustrated. The ion‐exchange reaction between Ni2+ and Li+ ions in the SEI is demonstrated to be the main reason for the increase of SEI resistivity.
Time‐of‐flight secondary ion mass spectroscopy coupled with multivariate curve resolution analysis is used to investigate the impact and distribution of Ni species on the solid electrolyte interphase (SEI). During accelerated aging of the LiNi0.88Co0.08Mn0.04O2/graphite full cell, the dissolution of Ni aggravates significantly upon cycling and a strong correlation between the dissolved‐Ni and organic species in the SEI on graphite is found.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202202894</doi><tpages>11</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7102-8428</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><orcidid>https://orcid.org/0000-0001-5291-7943</orcidid><orcidid>https://orcid.org/0000000152917943</orcidid><orcidid>https://orcid.org/0000000271028428</orcidid><orcidid>https://orcid.org/0000000308588577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2022-07, Vol.61 (30), p.e202202894-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1909024 |
source | Access via Wiley Online Library |
subjects | Aging Anodes Anodic dissolution Batteries Cathodes Cathodic dissolution Dissolution ENERGY STORAGE Failure mechanisms Geographical distribution Graphite Interphase Ions Lithium Lithium-Ion Batteries lithium-ion battery Mass spectroscopy MCR Analysis Ni Dissolution Secondary ion mass spectroscopy SEI Structure Solid electrolytes Species TOF-SIMS Transition metals |
title | Impacts of Dissolved Ni2+ on the Solid Electrolyte Interphase on a Graphite Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T19%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Dissolved%20Ni2+%20on%20the%20Solid%20Electrolyte%20Interphase%20on%20a%20Graphite%20Anode&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Xu,%20Hanying&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-07-25&rft.volume=61&rft.issue=30&rft.spage=e202202894&rft.epage=n/a&rft.pages=e202202894-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202202894&rft_dat=%3Cproquest_osti_%3E2652863752%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2690980841&rft_id=info:pmid/&rfr_iscdi=true |