A flexible event reconstruction based on machine learning and likelihood principles

Event reconstruction is a central step in many particle physics experiments, turning detector observables into parameter estimates; for example estimating the energy of an interaction given the sensor readout of a detector. A corresponding likelihood function is often intractable, and approximations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2023-03, Vol.1048 (C), p.168011, Article 168011
Hauptverfasser: Eller, Philipp, Fienberg, Aaron T., Weldert, Jan, Wendel, Garrett, Böser, Sebastian, Cowen, D.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Event reconstruction is a central step in many particle physics experiments, turning detector observables into parameter estimates; for example estimating the energy of an interaction given the sensor readout of a detector. A corresponding likelihood function is often intractable, and approximations need to be constructed. In our work, we first show how the full likelihood for a many-sensor detector can be broken apart into smaller terms, and secondly how we can train neural networks to approximate all terms solely based on forward simulation. Our technique results in a fast, flexible, and close-to-optimal surrogate model proportional to the likelihood and can be used in conjunction with standard inference techniques allowing for a consistent treatment of uncertainties. We illustrate our technique for parameter inference in neutrino telescopes based on maximum likelihood and Bayesian posterior sampling. Given its great flexibility, we also showcase our method for geometry optimization enabling to learn optimal detector designs. Lastly, we apply our method to realistic simulation of a ton-scale water-based liquid scintillator detector.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2023.168011