Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device
Laser diodes based on solution‐processable materials can benefit numerous technologies including integrated electronics and photonics, telecommunications, and medical diagnostics. An attractive system for implementing these devices is colloidal semiconductor quantum dots (QDs). The progress towards...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-03, Vol.35 (9), p.e2206613-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e2206613 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Ahn, Namyoung Park, Young‐Shin Livache, Clément Du, Jun Gungor, Kivanc Kim, Jaehoon Klimov, Victor I. |
description | Laser diodes based on solution‐processable materials can benefit numerous technologies including integrated electronics and photonics, telecommunications, and medical diagnostics. An attractive system for implementing these devices is colloidal semiconductor quantum dots (QDs). The progress towards a QD laser diode has been hampered by rapid nonradiative Auger decay of optical‐gain‐active multicarrier states, fast device degradation at high current densities required for laser action, and unfavorable competition between optical gain and optical losses in a multicomponent device stack. Here we resolve some of these challenges and demonstrate optically excited lasing from fully functional high‐current density electroluminescent (EL) devices with an integrated optical resonator. This advance has become possible due to excellent optical gain properties of continuously graded QDs and a refined device architecture, which allows for highly efficient light amplification in a thin, EL‐active QD layer.
Dual‐function colloidal quantum dot (QD) devices that operate as a high‐current density light emitting diode and an optically excited laser are demonstrated. The device structure has been optimized to reduce optical losses and allow for efficient wave‐guiding within the active QD layer. This demonstration represents an important milestone toward the practical implementation of a colloidal QD laser diode. |
doi_str_mv | 10.1002/adma.202206613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1907320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755581270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4403-99f95dfc2495d6c919601ba9347b488444ec385605757b3740742817c55399423</originalsourceid><addsrcrecordid>eNqF0c1uEzEUBWALgWha2LJEFmy66AT_e7xMk9AiBVVIsLYcj9O68niC7SnNro_AM_IkOEopEhtWtqXPR_fqAPAGoylGiHwwXW-mBBGChMD0GZhgTnDDkOLPwQQpyhslWHsEjnO-RQgpgcRLcEQFJy1t5QSEq23x1oSwg8t764vr4MpkH6-hj9DAubnzZffr4ee5ya47g5f--qa-5mNKLpZ6W7iYq4BfRhPL2MPFUOAyOFvSEMbeR5dthXDh7rx1r8CLjQnZvX48T8C3j8uv88tmdXXxaT5bNZYxRBulNop3G0tYPYRVuE6N10ZRJtesbRljztKWC8Qll2sqGZKMtFhazqlSjNAT8O6QO-Tidd6vZW_sEGOdS2OFJCWootMD2qbh--hy0b2vw4ZgohvGrInknLeYyD19_w-9HcYU6wpVtRgjIbGoanpQNg05J7fR2-R7k3YaI70vS-_L0k9l1Q9vH2PHde-6J_6nnQrUAfzwwe3-E6dni8-zv-G_Ac44oI8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781106716</pqid></control><display><type>article</type><title>Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ahn, Namyoung ; Park, Young‐Shin ; Livache, Clément ; Du, Jun ; Gungor, Kivanc ; Kim, Jaehoon ; Klimov, Victor I.</creator><creatorcontrib>Ahn, Namyoung ; Park, Young‐Shin ; Livache, Clément ; Du, Jun ; Gungor, Kivanc ; Kim, Jaehoon ; Klimov, Victor I. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Laser diodes based on solution‐processable materials can benefit numerous technologies including integrated electronics and photonics, telecommunications, and medical diagnostics. An attractive system for implementing these devices is colloidal semiconductor quantum dots (QDs). The progress towards a QD laser diode has been hampered by rapid nonradiative Auger decay of optical‐gain‐active multicarrier states, fast device degradation at high current densities required for laser action, and unfavorable competition between optical gain and optical losses in a multicomponent device stack. Here we resolve some of these challenges and demonstrate optically excited lasing from fully functional high‐current density electroluminescent (EL) devices with an integrated optical resonator. This advance has become possible due to excellent optical gain properties of continuously graded QDs and a refined device architecture, which allows for highly efficient light amplification in a thin, EL‐active QD layer.
Dual‐function colloidal quantum dot (QD) devices that operate as a high‐current density light emitting diode and an optically excited laser are demonstrated. The device structure has been optimized to reduce optical losses and allow for efficient wave‐guiding within the active QD layer. This demonstration represents an important milestone toward the practical implementation of a colloidal QD laser diode.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202206613</identifier><identifier>PMID: 36528387</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Augers ; colloidal quantum dot ; Computer architecture ; Current density ; distributed feedback resonators ; Electroluminescence ; Lasing ; light emitting diodes ; Material Science ; MATERIALS SCIENCE ; Optical properties ; Optical resonators ; Quantum dots ; Semiconductor lasers ; suppressed Auger decay</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (9), p.e2206613-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4403-99f95dfc2495d6c919601ba9347b488444ec385605757b3740742817c55399423</citedby><cites>FETCH-LOGICAL-c4403-99f95dfc2495d6c919601ba9347b488444ec385605757b3740742817c55399423</cites><orcidid>0000-0002-4628-0197 ; 0000-0002-8723-148X ; 0000-0003-4204-1305 ; 0000-0002-8500-5745 ; 0000-0003-1158-3179 ; 0000-0003-2666-1061 ; 0000-0002-2588-2607 ; 000000028723148X ; 0000000342041305 ; 0000000225882607 ; 0000000285005745 ; 0000000311583179 ; 0000000326661061 ; 0000000246280197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202206613$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202206613$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36528387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1907320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Namyoung</creatorcontrib><creatorcontrib>Park, Young‐Shin</creatorcontrib><creatorcontrib>Livache, Clément</creatorcontrib><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Gungor, Kivanc</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Klimov, Victor I.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Laser diodes based on solution‐processable materials can benefit numerous technologies including integrated electronics and photonics, telecommunications, and medical diagnostics. An attractive system for implementing these devices is colloidal semiconductor quantum dots (QDs). The progress towards a QD laser diode has been hampered by rapid nonradiative Auger decay of optical‐gain‐active multicarrier states, fast device degradation at high current densities required for laser action, and unfavorable competition between optical gain and optical losses in a multicomponent device stack. Here we resolve some of these challenges and demonstrate optically excited lasing from fully functional high‐current density electroluminescent (EL) devices with an integrated optical resonator. This advance has become possible due to excellent optical gain properties of continuously graded QDs and a refined device architecture, which allows for highly efficient light amplification in a thin, EL‐active QD layer.
Dual‐function colloidal quantum dot (QD) devices that operate as a high‐current density light emitting diode and an optically excited laser are demonstrated. The device structure has been optimized to reduce optical losses and allow for efficient wave‐guiding within the active QD layer. This demonstration represents an important milestone toward the practical implementation of a colloidal QD laser diode.</description><subject>Augers</subject><subject>colloidal quantum dot</subject><subject>Computer architecture</subject><subject>Current density</subject><subject>distributed feedback resonators</subject><subject>Electroluminescence</subject><subject>Lasing</subject><subject>light emitting diodes</subject><subject>Material Science</subject><subject>MATERIALS SCIENCE</subject><subject>Optical properties</subject><subject>Optical resonators</subject><subject>Quantum dots</subject><subject>Semiconductor lasers</subject><subject>suppressed Auger decay</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqF0c1uEzEUBWALgWha2LJEFmy66AT_e7xMk9AiBVVIsLYcj9O68niC7SnNro_AM_IkOEopEhtWtqXPR_fqAPAGoylGiHwwXW-mBBGChMD0GZhgTnDDkOLPwQQpyhslWHsEjnO-RQgpgcRLcEQFJy1t5QSEq23x1oSwg8t764vr4MpkH6-hj9DAubnzZffr4ee5ya47g5f--qa-5mNKLpZ6W7iYq4BfRhPL2MPFUOAyOFvSEMbeR5dthXDh7rx1r8CLjQnZvX48T8C3j8uv88tmdXXxaT5bNZYxRBulNop3G0tYPYRVuE6N10ZRJtesbRljztKWC8Qll2sqGZKMtFhazqlSjNAT8O6QO-Tidd6vZW_sEGOdS2OFJCWootMD2qbh--hy0b2vw4ZgohvGrInknLeYyD19_w-9HcYU6wpVtRgjIbGoanpQNg05J7fR2-R7k3YaI70vS-_L0k9l1Q9vH2PHde-6J_6nnQrUAfzwwe3-E6dni8-zv-G_Ac44oI8</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ahn, Namyoung</creator><creator>Park, Young‐Shin</creator><creator>Livache, Clément</creator><creator>Du, Jun</creator><creator>Gungor, Kivanc</creator><creator>Kim, Jaehoon</creator><creator>Klimov, Victor I.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4628-0197</orcidid><orcidid>https://orcid.org/0000-0002-8723-148X</orcidid><orcidid>https://orcid.org/0000-0003-4204-1305</orcidid><orcidid>https://orcid.org/0000-0002-8500-5745</orcidid><orcidid>https://orcid.org/0000-0003-1158-3179</orcidid><orcidid>https://orcid.org/0000-0003-2666-1061</orcidid><orcidid>https://orcid.org/0000-0002-2588-2607</orcidid><orcidid>https://orcid.org/000000028723148X</orcidid><orcidid>https://orcid.org/0000000342041305</orcidid><orcidid>https://orcid.org/0000000225882607</orcidid><orcidid>https://orcid.org/0000000285005745</orcidid><orcidid>https://orcid.org/0000000311583179</orcidid><orcidid>https://orcid.org/0000000326661061</orcidid><orcidid>https://orcid.org/0000000246280197</orcidid></search><sort><creationdate>20230301</creationdate><title>Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device</title><author>Ahn, Namyoung ; Park, Young‐Shin ; Livache, Clément ; Du, Jun ; Gungor, Kivanc ; Kim, Jaehoon ; Klimov, Victor I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4403-99f95dfc2495d6c919601ba9347b488444ec385605757b3740742817c55399423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Augers</topic><topic>colloidal quantum dot</topic><topic>Computer architecture</topic><topic>Current density</topic><topic>distributed feedback resonators</topic><topic>Electroluminescence</topic><topic>Lasing</topic><topic>light emitting diodes</topic><topic>Material Science</topic><topic>MATERIALS SCIENCE</topic><topic>Optical properties</topic><topic>Optical resonators</topic><topic>Quantum dots</topic><topic>Semiconductor lasers</topic><topic>suppressed Auger decay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Namyoung</creatorcontrib><creatorcontrib>Park, Young‐Shin</creatorcontrib><creatorcontrib>Livache, Clément</creatorcontrib><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Gungor, Kivanc</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Klimov, Victor I.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Namyoung</au><au>Park, Young‐Shin</au><au>Livache, Clément</au><au>Du, Jun</au><au>Gungor, Kivanc</au><au>Kim, Jaehoon</au><au>Klimov, Victor I.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><spage>e2206613</spage><epage>n/a</epage><pages>e2206613-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Laser diodes based on solution‐processable materials can benefit numerous technologies including integrated electronics and photonics, telecommunications, and medical diagnostics. An attractive system for implementing these devices is colloidal semiconductor quantum dots (QDs). The progress towards a QD laser diode has been hampered by rapid nonradiative Auger decay of optical‐gain‐active multicarrier states, fast device degradation at high current densities required for laser action, and unfavorable competition between optical gain and optical losses in a multicomponent device stack. Here we resolve some of these challenges and demonstrate optically excited lasing from fully functional high‐current density electroluminescent (EL) devices with an integrated optical resonator. This advance has become possible due to excellent optical gain properties of continuously graded QDs and a refined device architecture, which allows for highly efficient light amplification in a thin, EL‐active QD layer.
Dual‐function colloidal quantum dot (QD) devices that operate as a high‐current density light emitting diode and an optically excited laser are demonstrated. The device structure has been optimized to reduce optical losses and allow for efficient wave‐guiding within the active QD layer. This demonstration represents an important milestone toward the practical implementation of a colloidal QD laser diode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36528387</pmid><doi>10.1002/adma.202206613</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4628-0197</orcidid><orcidid>https://orcid.org/0000-0002-8723-148X</orcidid><orcidid>https://orcid.org/0000-0003-4204-1305</orcidid><orcidid>https://orcid.org/0000-0002-8500-5745</orcidid><orcidid>https://orcid.org/0000-0003-1158-3179</orcidid><orcidid>https://orcid.org/0000-0003-2666-1061</orcidid><orcidid>https://orcid.org/0000-0002-2588-2607</orcidid><orcidid>https://orcid.org/000000028723148X</orcidid><orcidid>https://orcid.org/0000000342041305</orcidid><orcidid>https://orcid.org/0000000225882607</orcidid><orcidid>https://orcid.org/0000000285005745</orcidid><orcidid>https://orcid.org/0000000311583179</orcidid><orcidid>https://orcid.org/0000000326661061</orcidid><orcidid>https://orcid.org/0000000246280197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-03, Vol.35 (9), p.e2206613-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1907320 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Augers colloidal quantum dot Computer architecture Current density distributed feedback resonators Electroluminescence Lasing light emitting diodes Material Science MATERIALS SCIENCE Optical properties Optical resonators Quantum dots Semiconductor lasers suppressed Auger decay |
title | Optically Excited Lasing in a Cavity‐Based, High‐Current‐Density Quantum Dot Electroluminescent Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Excited%20Lasing%20in%20a%20Cavity%E2%80%90Based,%20High%E2%80%90Current%E2%80%90Density%20Quantum%20Dot%20Electroluminescent%20Device&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ahn,%20Namyoung&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2023-03-01&rft.volume=35&rft.issue=9&rft.spage=e2206613&rft.epage=n/a&rft.pages=e2206613-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202206613&rft_dat=%3Cproquest_osti_%3E2755581270%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781106716&rft_id=info:pmid/36528387&rfr_iscdi=true |