Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample

Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2022-11, Vol.106 (10), Article 103530
Hauptverfasser: Porredon, A., Crocce, M., Elvin-Poole, J., Cawthon, R., Giannini, G., De Vicente, J., Carnero Rosell, A., Ferrero, I., Krause, E., Fang, X., Prat, J., Rodriguez-Monroy, M., Pandey, S., Pocino, A., Castander, F. J., Choi, A., Amon, A., Tutusaus, I., Dodelson, S., Sevilla-Noarbe, I., Fosalba, P., Gaztanaga, E., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Carrasco Kind, M., Chintalapati, P., Cordero, J., DeRose, J., Di Valentino, E., Doux, C., Eifler, T. F., Everett, S., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Huterer, D., Jain, B., Jarvis, M., Lee, S., Lemos, P., MacCrann, N., Mena-Fernández, J., Muir, J., Myles, J., Park, Y., Raveri, M., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scolnic, D., Secco, L. F., Sheldon, E., Troja, A., Troxel, M. A., Weaverdyck, N., Yanny, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Eckert, K., Evrard, A. E., Flaugher, B., Frieman, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. D
container_volume 106
creator Porredon, A.
Crocce, M.
Elvin-Poole, J.
Cawthon, R.
Giannini, G.
De Vicente, J.
Carnero Rosell, A.
Ferrero, I.
Krause, E.
Fang, X.
Prat, J.
Rodriguez-Monroy, M.
Pandey, S.
Pocino, A.
Castander, F. J.
Choi, A.
Amon, A.
Tutusaus, I.
Dodelson, S.
Sevilla-Noarbe, I.
Fosalba, P.
Gaztanaga, E.
Alarcon, A.
Alves, O.
Andrade-Oliveira, F.
Baxter, E.
Bechtol, K.
Becker, M. R.
Bernstein, G. M.
Blazek, J.
Camacho, H.
Campos, A.
Carrasco Kind, M.
Chintalapati, P.
Cordero, J.
DeRose, J.
Di Valentino, E.
Doux, C.
Eifler, T. F.
Everett, S.
Ferté, A.
Friedrich, O.
Gatti, M.
Gruen, D.
Harrison, I.
Hartley, W. G.
Herner, K.
Huff, E. M.
Huterer, D.
Jain, B.
Jarvis, M.
Lee, S.
Lemos, P.
MacCrann, N.
Mena-Fernández, J.
Muir, J.
Myles, J.
Park, Y.
Raveri, M.
Rosenfeld, R.
Ross, A. J.
Rykoff, E. S.
Samuroff, S.
Sánchez, C.
Sanchez, E.
Sanchez, J.
Sanchez Cid, D.
Scolnic, D.
Secco, L. F.
Sheldon, E.
Troja, A.
Troxel, M. A.
Weaverdyck, N.
Yanny, B.
Zuntz, J.
Abbott, T. M. C.
Aguena, M.
Allam, S.
Annis, J.
Avila, S.
Bacon, D.
Bertin, E.
Bhargava, S.
Brooks, D.
Buckley-Geer, E.
Burke, D. L.
Carretero, J.
Costanzi, M.
da Costa, L. N.
Pereira, M. E. S.
Davis, T. M.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Doel, P.
Drlica-Wagner, A.
Eckert, K.
Evrard, A. E.
Flaugher, B.
Frieman, J.
description Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).
doi_str_mv 10.1103/PhysRevD.106.103530
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1906914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03261538v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIVKVfwMXixiGwjpu44Va1hSIFgXgcOFkbx0kDTlLZTkU-gb8mfdDD7o5mZldajeddUrihFNjty6qzr2ozv6EQ9cVCBifeIBhz8AGC-PSIKZx7I2u_oIcRxJzSgfc7R_NNFrUyRUfeWrNRHflUaAgjRtlWO3tHZo2tGt0UpURNZFNbZ7CsnSW5aSpSoMafjkjdWqdMWRcE6-zA-gdRq9pulXbX3UqRJyySstoJxGK11urCO8tRWzU6zKH3cb94ny395PnhcTZNfMl45Pw0zhjIFFKGmGcZl4iYRuNwEkqaUc7HYRayOJI5yomCOMxSzimk8SRg_eSUDb2r_d3GulJYWTolV_1XtZJO0BiimI570_XetEIt1qas0HSiwVIsp4nYcsCCiIZsstkeZHuvNI21RuXHBQpim5D4T6gnIrFPiP0BTWSHWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</title><source>American Physical Society Journals</source><creator>Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; Cawthon, R. ; Giannini, G. ; De Vicente, J. ; Carnero Rosell, A. ; Ferrero, I. ; Krause, E. ; Fang, X. ; Prat, J. ; Rodriguez-Monroy, M. ; Pandey, S. ; Pocino, A. ; Castander, F. J. ; Choi, A. ; Amon, A. ; Tutusaus, I. ; Dodelson, S. ; Sevilla-Noarbe, I. ; Fosalba, P. ; Gaztanaga, E. ; Alarcon, A. ; Alves, O. ; Andrade-Oliveira, F. ; Baxter, E. ; Bechtol, K. ; Becker, M. R. ; Bernstein, G. M. ; Blazek, J. ; Camacho, H. ; Campos, A. ; Carrasco Kind, M. ; Chintalapati, P. ; Cordero, J. ; DeRose, J. ; Di Valentino, E. ; Doux, C. ; Eifler, T. F. ; Everett, S. ; Ferté, A. ; Friedrich, O. ; Gatti, M. ; Gruen, D. ; Harrison, I. ; Hartley, W. G. ; Herner, K. ; Huff, E. M. ; Huterer, D. ; Jain, B. ; Jarvis, M. ; Lee, S. ; Lemos, P. ; MacCrann, N. ; Mena-Fernández, J. ; Muir, J. ; Myles, J. ; Park, Y. ; Raveri, M. ; Rosenfeld, R. ; Ross, A. J. ; Rykoff, E. S. ; Samuroff, S. ; Sánchez, C. ; Sanchez, E. ; Sanchez, J. ; Sanchez Cid, D. ; Scolnic, D. ; Secco, L. F. ; Sheldon, E. ; Troja, A. ; Troxel, M. A. ; Weaverdyck, N. ; Yanny, B. ; Zuntz, J. ; Abbott, T. M. C. ; Aguena, M. ; Allam, S. ; Annis, J. ; Avila, S. ; Bacon, D. ; Bertin, E. ; Bhargava, S. ; Brooks, D. ; Buckley-Geer, E. ; Burke, D. L. ; Carretero, J. ; Costanzi, M. ; da Costa, L. N. ; Pereira, M. E. S. ; Davis, T. M. ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Drlica-Wagner, A. ; Eckert, K. ; Evrard, A. E. ; Flaugher, B. ; Frieman, J.</creator><creatorcontrib>Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; Cawthon, R. ; Giannini, G. ; De Vicente, J. ; Carnero Rosell, A. ; Ferrero, I. ; Krause, E. ; Fang, X. ; Prat, J. ; Rodriguez-Monroy, M. ; Pandey, S. ; Pocino, A. ; Castander, F. J. ; Choi, A. ; Amon, A. ; Tutusaus, I. ; Dodelson, S. ; Sevilla-Noarbe, I. ; Fosalba, P. ; Gaztanaga, E. ; Alarcon, A. ; Alves, O. ; Andrade-Oliveira, F. ; Baxter, E. ; Bechtol, K. ; Becker, M. R. ; Bernstein, G. M. ; Blazek, J. ; Camacho, H. ; Campos, A. ; Carrasco Kind, M. ; Chintalapati, P. ; Cordero, J. ; DeRose, J. ; Di Valentino, E. ; Doux, C. ; Eifler, T. F. ; Everett, S. ; Ferté, A. ; Friedrich, O. ; Gatti, M. ; Gruen, D. ; Harrison, I. ; Hartley, W. G. ; Herner, K. ; Huff, E. M. ; Huterer, D. ; Jain, B. ; Jarvis, M. ; Lee, S. ; Lemos, P. ; MacCrann, N. ; Mena-Fernández, J. ; Muir, J. ; Myles, J. ; Park, Y. ; Raveri, M. ; Rosenfeld, R. ; Ross, A. J. ; Rykoff, E. S. ; Samuroff, S. ; Sánchez, C. ; Sanchez, E. ; Sanchez, J. ; Sanchez Cid, D. ; Scolnic, D. ; Secco, L. F. ; Sheldon, E. ; Troja, A. ; Troxel, M. A. ; Weaverdyck, N. ; Yanny, B. ; Zuntz, J. ; Abbott, T. M. C. ; Aguena, M. ; Allam, S. ; Annis, J. ; Avila, S. ; Bacon, D. ; Bertin, E. ; Bhargava, S. ; Brooks, D. ; Buckley-Geer, E. ; Burke, D. L. ; Carretero, J. ; Costanzi, M. ; da Costa, L. N. ; Pereira, M. E. S. ; Davis, T. M. ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Drlica-Wagner, A. ; Eckert, K. ; Evrard, A. E. ; Flaugher, B. ; Frieman, J. ; DES Collaboration ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.106.103530</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; cosmological parameters ; cosmology ; dark energy ; dark matter ; gravitational lenses ; large scale structure of the universe ; Physics ; sky surveys</subject><ispartof>Physical review. D, 2022-11, Vol.106 (10), Article 103530</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</citedby><cites>FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</cites><orcidid>0000-0002-2762-2024 ; 0000-0001-7039-9078 ; 0000-0002-1510-5214 ; 0000000227622024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03261538$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1906914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Porredon, A.</creatorcontrib><creatorcontrib>Crocce, M.</creatorcontrib><creatorcontrib>Elvin-Poole, J.</creatorcontrib><creatorcontrib>Cawthon, R.</creatorcontrib><creatorcontrib>Giannini, G.</creatorcontrib><creatorcontrib>De Vicente, J.</creatorcontrib><creatorcontrib>Carnero Rosell, A.</creatorcontrib><creatorcontrib>Ferrero, I.</creatorcontrib><creatorcontrib>Krause, E.</creatorcontrib><creatorcontrib>Fang, X.</creatorcontrib><creatorcontrib>Prat, J.</creatorcontrib><creatorcontrib>Rodriguez-Monroy, M.</creatorcontrib><creatorcontrib>Pandey, S.</creatorcontrib><creatorcontrib>Pocino, A.</creatorcontrib><creatorcontrib>Castander, F. J.</creatorcontrib><creatorcontrib>Choi, A.</creatorcontrib><creatorcontrib>Amon, A.</creatorcontrib><creatorcontrib>Tutusaus, I.</creatorcontrib><creatorcontrib>Dodelson, S.</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Gaztanaga, E.</creatorcontrib><creatorcontrib>Alarcon, A.</creatorcontrib><creatorcontrib>Alves, O.</creatorcontrib><creatorcontrib>Andrade-Oliveira, F.</creatorcontrib><creatorcontrib>Baxter, E.</creatorcontrib><creatorcontrib>Bechtol, K.</creatorcontrib><creatorcontrib>Becker, M. R.</creatorcontrib><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Blazek, J.</creatorcontrib><creatorcontrib>Camacho, H.</creatorcontrib><creatorcontrib>Campos, A.</creatorcontrib><creatorcontrib>Carrasco Kind, M.</creatorcontrib><creatorcontrib>Chintalapati, P.</creatorcontrib><creatorcontrib>Cordero, J.</creatorcontrib><creatorcontrib>DeRose, J.</creatorcontrib><creatorcontrib>Di Valentino, E.</creatorcontrib><creatorcontrib>Doux, C.</creatorcontrib><creatorcontrib>Eifler, T. F.</creatorcontrib><creatorcontrib>Everett, S.</creatorcontrib><creatorcontrib>Ferté, A.</creatorcontrib><creatorcontrib>Friedrich, O.</creatorcontrib><creatorcontrib>Gatti, M.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Harrison, I.</creatorcontrib><creatorcontrib>Hartley, W. G.</creatorcontrib><creatorcontrib>Herner, K.</creatorcontrib><creatorcontrib>Huff, E. M.</creatorcontrib><creatorcontrib>Huterer, D.</creatorcontrib><creatorcontrib>Jain, B.</creatorcontrib><creatorcontrib>Jarvis, M.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Lemos, P.</creatorcontrib><creatorcontrib>MacCrann, N.</creatorcontrib><creatorcontrib>Mena-Fernández, J.</creatorcontrib><creatorcontrib>Muir, J.</creatorcontrib><creatorcontrib>Myles, J.</creatorcontrib><creatorcontrib>Park, Y.</creatorcontrib><creatorcontrib>Raveri, M.</creatorcontrib><creatorcontrib>Rosenfeld, R.</creatorcontrib><creatorcontrib>Ross, A. J.</creatorcontrib><creatorcontrib>Rykoff, E. S.</creatorcontrib><creatorcontrib>Samuroff, S.</creatorcontrib><creatorcontrib>Sánchez, C.</creatorcontrib><creatorcontrib>Sanchez, E.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Sanchez Cid, D.</creatorcontrib><creatorcontrib>Scolnic, D.</creatorcontrib><creatorcontrib>Secco, L. F.</creatorcontrib><creatorcontrib>Sheldon, E.</creatorcontrib><creatorcontrib>Troja, A.</creatorcontrib><creatorcontrib>Troxel, M. A.</creatorcontrib><creatorcontrib>Weaverdyck, N.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>Zuntz, J.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Aguena, M.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Annis, J.</creatorcontrib><creatorcontrib>Avila, S.</creatorcontrib><creatorcontrib>Bacon, D.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Bhargava, S.</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><creatorcontrib>Buckley-Geer, E.</creatorcontrib><creatorcontrib>Burke, D. L.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Costanzi, M.</creatorcontrib><creatorcontrib>da Costa, L. N.</creatorcontrib><creatorcontrib>Pereira, M. E. S.</creatorcontrib><creatorcontrib>Davis, T. M.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Diehl, H. T.</creatorcontrib><creatorcontrib>Dietrich, J. P.</creatorcontrib><creatorcontrib>Doel, P.</creatorcontrib><creatorcontrib>Drlica-Wagner, A.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Evrard, A. E.</creatorcontrib><creatorcontrib>Flaugher, B.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</title><title>Physical review. D</title><description>Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>cosmological parameters</subject><subject>cosmology</subject><subject>dark energy</subject><subject>dark matter</subject><subject>gravitational lenses</subject><subject>large scale structure of the universe</subject><subject>Physics</subject><subject>sky surveys</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UctOwzAQjBBIVKVfwMXixiGwjpu44Va1hSIFgXgcOFkbx0kDTlLZTkU-gb8mfdDD7o5mZldajeddUrihFNjty6qzr2ozv6EQ9cVCBifeIBhz8AGC-PSIKZx7I2u_oIcRxJzSgfc7R_NNFrUyRUfeWrNRHflUaAgjRtlWO3tHZo2tGt0UpURNZFNbZ7CsnSW5aSpSoMafjkjdWqdMWRcE6-zA-gdRq9pulXbX3UqRJyySstoJxGK11urCO8tRWzU6zKH3cb94ny395PnhcTZNfMl45Pw0zhjIFFKGmGcZl4iYRuNwEkqaUc7HYRayOJI5yomCOMxSzimk8SRg_eSUDb2r_d3GulJYWTolV_1XtZJO0BiimI570_XetEIt1qas0HSiwVIsp4nYcsCCiIZsstkeZHuvNI21RuXHBQpim5D4T6gnIrFPiP0BTWSHWQ</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Porredon, A.</creator><creator>Crocce, M.</creator><creator>Elvin-Poole, J.</creator><creator>Cawthon, R.</creator><creator>Giannini, G.</creator><creator>De Vicente, J.</creator><creator>Carnero Rosell, A.</creator><creator>Ferrero, I.</creator><creator>Krause, E.</creator><creator>Fang, X.</creator><creator>Prat, J.</creator><creator>Rodriguez-Monroy, M.</creator><creator>Pandey, S.</creator><creator>Pocino, A.</creator><creator>Castander, F. J.</creator><creator>Choi, A.</creator><creator>Amon, A.</creator><creator>Tutusaus, I.</creator><creator>Dodelson, S.</creator><creator>Sevilla-Noarbe, I.</creator><creator>Fosalba, P.</creator><creator>Gaztanaga, E.</creator><creator>Alarcon, A.</creator><creator>Alves, O.</creator><creator>Andrade-Oliveira, F.</creator><creator>Baxter, E.</creator><creator>Bechtol, K.</creator><creator>Becker, M. R.</creator><creator>Bernstein, G. M.</creator><creator>Blazek, J.</creator><creator>Camacho, H.</creator><creator>Campos, A.</creator><creator>Carrasco Kind, M.</creator><creator>Chintalapati, P.</creator><creator>Cordero, J.</creator><creator>DeRose, J.</creator><creator>Di Valentino, E.</creator><creator>Doux, C.</creator><creator>Eifler, T. F.</creator><creator>Everett, S.</creator><creator>Ferté, A.</creator><creator>Friedrich, O.</creator><creator>Gatti, M.</creator><creator>Gruen, D.</creator><creator>Harrison, I.</creator><creator>Hartley, W. G.</creator><creator>Herner, K.</creator><creator>Huff, E. M.</creator><creator>Huterer, D.</creator><creator>Jain, B.</creator><creator>Jarvis, M.</creator><creator>Lee, S.</creator><creator>Lemos, P.</creator><creator>MacCrann, N.</creator><creator>Mena-Fernández, J.</creator><creator>Muir, J.</creator><creator>Myles, J.</creator><creator>Park, Y.</creator><creator>Raveri, M.</creator><creator>Rosenfeld, R.</creator><creator>Ross, A. J.</creator><creator>Rykoff, E. S.</creator><creator>Samuroff, S.</creator><creator>Sánchez, C.</creator><creator>Sanchez, E.</creator><creator>Sanchez, J.</creator><creator>Sanchez Cid, D.</creator><creator>Scolnic, D.</creator><creator>Secco, L. F.</creator><creator>Sheldon, E.</creator><creator>Troja, A.</creator><creator>Troxel, M. A.</creator><creator>Weaverdyck, N.</creator><creator>Yanny, B.</creator><creator>Zuntz, J.</creator><creator>Abbott, T. M. C.</creator><creator>Aguena, M.</creator><creator>Allam, S.</creator><creator>Annis, J.</creator><creator>Avila, S.</creator><creator>Bacon, D.</creator><creator>Bertin, E.</creator><creator>Bhargava, S.</creator><creator>Brooks, D.</creator><creator>Buckley-Geer, E.</creator><creator>Burke, D. L.</creator><creator>Carretero, J.</creator><creator>Costanzi, M.</creator><creator>da Costa, L. N.</creator><creator>Pereira, M. E. S.</creator><creator>Davis, T. M.</creator><creator>Desai, S.</creator><creator>Diehl, H. T.</creator><creator>Dietrich, J. P.</creator><creator>Doel, P.</creator><creator>Drlica-Wagner, A.</creator><creator>Eckert, K.</creator><creator>Evrard, A. E.</creator><creator>Flaugher, B.</creator><creator>Frieman, J.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2762-2024</orcidid><orcidid>https://orcid.org/0000-0001-7039-9078</orcidid><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><orcidid>https://orcid.org/0000000227622024</orcidid></search><sort><creationdate>20221128</creationdate><title>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</title><author>Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; Cawthon, R. ; Giannini, G. ; De Vicente, J. ; Carnero Rosell, A. ; Ferrero, I. ; Krause, E. ; Fang, X. ; Prat, J. ; Rodriguez-Monroy, M. ; Pandey, S. ; Pocino, A. ; Castander, F. J. ; Choi, A. ; Amon, A. ; Tutusaus, I. ; Dodelson, S. ; Sevilla-Noarbe, I. ; Fosalba, P. ; Gaztanaga, E. ; Alarcon, A. ; Alves, O. ; Andrade-Oliveira, F. ; Baxter, E. ; Bechtol, K. ; Becker, M. R. ; Bernstein, G. M. ; Blazek, J. ; Camacho, H. ; Campos, A. ; Carrasco Kind, M. ; Chintalapati, P. ; Cordero, J. ; DeRose, J. ; Di Valentino, E. ; Doux, C. ; Eifler, T. F. ; Everett, S. ; Ferté, A. ; Friedrich, O. ; Gatti, M. ; Gruen, D. ; Harrison, I. ; Hartley, W. G. ; Herner, K. ; Huff, E. M. ; Huterer, D. ; Jain, B. ; Jarvis, M. ; Lee, S. ; Lemos, P. ; MacCrann, N. ; Mena-Fernández, J. ; Muir, J. ; Myles, J. ; Park, Y. ; Raveri, M. ; Rosenfeld, R. ; Ross, A. J. ; Rykoff, E. S. ; Samuroff, S. ; Sánchez, C. ; Sanchez, E. ; Sanchez, J. ; Sanchez Cid, D. ; Scolnic, D. ; Secco, L. F. ; Sheldon, E. ; Troja, A. ; Troxel, M. A. ; Weaverdyck, N. ; Yanny, B. ; Zuntz, J. ; Abbott, T. M. C. ; Aguena, M. ; Allam, S. ; Annis, J. ; Avila, S. ; Bacon, D. ; Bertin, E. ; Bhargava, S. ; Brooks, D. ; Buckley-Geer, E. ; Burke, D. L. ; Carretero, J. ; Costanzi, M. ; da Costa, L. N. ; Pereira, M. E. S. ; Davis, T. M. ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Drlica-Wagner, A. ; Eckert, K. ; Evrard, A. E. ; Flaugher, B. ; Frieman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>cosmological parameters</topic><topic>cosmology</topic><topic>dark energy</topic><topic>dark matter</topic><topic>gravitational lenses</topic><topic>large scale structure of the universe</topic><topic>Physics</topic><topic>sky surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porredon, A.</creatorcontrib><creatorcontrib>Crocce, M.</creatorcontrib><creatorcontrib>Elvin-Poole, J.</creatorcontrib><creatorcontrib>Cawthon, R.</creatorcontrib><creatorcontrib>Giannini, G.</creatorcontrib><creatorcontrib>De Vicente, J.</creatorcontrib><creatorcontrib>Carnero Rosell, A.</creatorcontrib><creatorcontrib>Ferrero, I.</creatorcontrib><creatorcontrib>Krause, E.</creatorcontrib><creatorcontrib>Fang, X.</creatorcontrib><creatorcontrib>Prat, J.</creatorcontrib><creatorcontrib>Rodriguez-Monroy, M.</creatorcontrib><creatorcontrib>Pandey, S.</creatorcontrib><creatorcontrib>Pocino, A.</creatorcontrib><creatorcontrib>Castander, F. J.</creatorcontrib><creatorcontrib>Choi, A.</creatorcontrib><creatorcontrib>Amon, A.</creatorcontrib><creatorcontrib>Tutusaus, I.</creatorcontrib><creatorcontrib>Dodelson, S.</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Gaztanaga, E.</creatorcontrib><creatorcontrib>Alarcon, A.</creatorcontrib><creatorcontrib>Alves, O.</creatorcontrib><creatorcontrib>Andrade-Oliveira, F.</creatorcontrib><creatorcontrib>Baxter, E.</creatorcontrib><creatorcontrib>Bechtol, K.</creatorcontrib><creatorcontrib>Becker, M. R.</creatorcontrib><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Blazek, J.</creatorcontrib><creatorcontrib>Camacho, H.</creatorcontrib><creatorcontrib>Campos, A.</creatorcontrib><creatorcontrib>Carrasco Kind, M.</creatorcontrib><creatorcontrib>Chintalapati, P.</creatorcontrib><creatorcontrib>Cordero, J.</creatorcontrib><creatorcontrib>DeRose, J.</creatorcontrib><creatorcontrib>Di Valentino, E.</creatorcontrib><creatorcontrib>Doux, C.</creatorcontrib><creatorcontrib>Eifler, T. F.</creatorcontrib><creatorcontrib>Everett, S.</creatorcontrib><creatorcontrib>Ferté, A.</creatorcontrib><creatorcontrib>Friedrich, O.</creatorcontrib><creatorcontrib>Gatti, M.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Harrison, I.</creatorcontrib><creatorcontrib>Hartley, W. G.</creatorcontrib><creatorcontrib>Herner, K.</creatorcontrib><creatorcontrib>Huff, E. M.</creatorcontrib><creatorcontrib>Huterer, D.</creatorcontrib><creatorcontrib>Jain, B.</creatorcontrib><creatorcontrib>Jarvis, M.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Lemos, P.</creatorcontrib><creatorcontrib>MacCrann, N.</creatorcontrib><creatorcontrib>Mena-Fernández, J.</creatorcontrib><creatorcontrib>Muir, J.</creatorcontrib><creatorcontrib>Myles, J.</creatorcontrib><creatorcontrib>Park, Y.</creatorcontrib><creatorcontrib>Raveri, M.</creatorcontrib><creatorcontrib>Rosenfeld, R.</creatorcontrib><creatorcontrib>Ross, A. J.</creatorcontrib><creatorcontrib>Rykoff, E. S.</creatorcontrib><creatorcontrib>Samuroff, S.</creatorcontrib><creatorcontrib>Sánchez, C.</creatorcontrib><creatorcontrib>Sanchez, E.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Sanchez Cid, D.</creatorcontrib><creatorcontrib>Scolnic, D.</creatorcontrib><creatorcontrib>Secco, L. F.</creatorcontrib><creatorcontrib>Sheldon, E.</creatorcontrib><creatorcontrib>Troja, A.</creatorcontrib><creatorcontrib>Troxel, M. A.</creatorcontrib><creatorcontrib>Weaverdyck, N.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>Zuntz, J.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Aguena, M.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Annis, J.</creatorcontrib><creatorcontrib>Avila, S.</creatorcontrib><creatorcontrib>Bacon, D.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Bhargava, S.</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><creatorcontrib>Buckley-Geer, E.</creatorcontrib><creatorcontrib>Burke, D. L.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Costanzi, M.</creatorcontrib><creatorcontrib>da Costa, L. N.</creatorcontrib><creatorcontrib>Pereira, M. E. S.</creatorcontrib><creatorcontrib>Davis, T. M.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Diehl, H. T.</creatorcontrib><creatorcontrib>Dietrich, J. P.</creatorcontrib><creatorcontrib>Doel, P.</creatorcontrib><creatorcontrib>Drlica-Wagner, A.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Evrard, A. E.</creatorcontrib><creatorcontrib>Flaugher, B.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porredon, A.</au><au>Crocce, M.</au><au>Elvin-Poole, J.</au><au>Cawthon, R.</au><au>Giannini, G.</au><au>De Vicente, J.</au><au>Carnero Rosell, A.</au><au>Ferrero, I.</au><au>Krause, E.</au><au>Fang, X.</au><au>Prat, J.</au><au>Rodriguez-Monroy, M.</au><au>Pandey, S.</au><au>Pocino, A.</au><au>Castander, F. J.</au><au>Choi, A.</au><au>Amon, A.</au><au>Tutusaus, I.</au><au>Dodelson, S.</au><au>Sevilla-Noarbe, I.</au><au>Fosalba, P.</au><au>Gaztanaga, E.</au><au>Alarcon, A.</au><au>Alves, O.</au><au>Andrade-Oliveira, F.</au><au>Baxter, E.</au><au>Bechtol, K.</au><au>Becker, M. R.</au><au>Bernstein, G. M.</au><au>Blazek, J.</au><au>Camacho, H.</au><au>Campos, A.</au><au>Carrasco Kind, M.</au><au>Chintalapati, P.</au><au>Cordero, J.</au><au>DeRose, J.</au><au>Di Valentino, E.</au><au>Doux, C.</au><au>Eifler, T. F.</au><au>Everett, S.</au><au>Ferté, A.</au><au>Friedrich, O.</au><au>Gatti, M.</au><au>Gruen, D.</au><au>Harrison, I.</au><au>Hartley, W. G.</au><au>Herner, K.</au><au>Huff, E. M.</au><au>Huterer, D.</au><au>Jain, B.</au><au>Jarvis, M.</au><au>Lee, S.</au><au>Lemos, P.</au><au>MacCrann, N.</au><au>Mena-Fernández, J.</au><au>Muir, J.</au><au>Myles, J.</au><au>Park, Y.</au><au>Raveri, M.</au><au>Rosenfeld, R.</au><au>Ross, A. J.</au><au>Rykoff, E. S.</au><au>Samuroff, S.</au><au>Sánchez, C.</au><au>Sanchez, E.</au><au>Sanchez, J.</au><au>Sanchez Cid, D.</au><au>Scolnic, D.</au><au>Secco, L. F.</au><au>Sheldon, E.</au><au>Troja, A.</au><au>Troxel, M. A.</au><au>Weaverdyck, N.</au><au>Yanny, B.</au><au>Zuntz, J.</au><au>Abbott, T. M. C.</au><au>Aguena, M.</au><au>Allam, S.</au><au>Annis, J.</au><au>Avila, S.</au><au>Bacon, D.</au><au>Bertin, E.</au><au>Bhargava, S.</au><au>Brooks, D.</au><au>Buckley-Geer, E.</au><au>Burke, D. L.</au><au>Carretero, J.</au><au>Costanzi, M.</au><au>da Costa, L. N.</au><au>Pereira, M. E. S.</au><au>Davis, T. M.</au><au>Desai, S.</au><au>Diehl, H. T.</au><au>Dietrich, J. P.</au><au>Doel, P.</au><au>Drlica-Wagner, A.</au><au>Eckert, K.</au><au>Evrard, A. E.</au><au>Flaugher, B.</au><au>Frieman, J.</au><aucorp>DES Collaboration</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</atitle><jtitle>Physical review. D</jtitle><date>2022-11-28</date><risdate>2022</risdate><volume>106</volume><issue>10</issue><artnum>103530</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.106.103530</doi><orcidid>https://orcid.org/0000-0002-2762-2024</orcidid><orcidid>https://orcid.org/0000-0001-7039-9078</orcidid><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><orcidid>https://orcid.org/0000000227622024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2022-11, Vol.106 (10), Article 103530
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1906914
source American Physical Society Journals
subjects ASTRONOMY AND ASTROPHYSICS
Astrophysics
cosmological parameters
cosmology
dark energy
dark matter
gravitational lenses
large scale structure of the universe
Physics
sky surveys
title Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20Energy%20Survey%20Year%203%20results:%20Cosmological%20constraints%20from%20galaxy%20clustering%20and%20galaxy-galaxy%20lensing%20using%20the%20MagLim%20lens%20sample&rft.jtitle=Physical%20review.%20D&rft.au=Porredon,%20A.&rft.aucorp=DES%20Collaboration&rft.date=2022-11-28&rft.volume=106&rft.issue=10&rft.artnum=103530&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.106.103530&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_03261538v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true