Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample
Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2022-11, Vol.106 (10), Article 103530 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review. D |
container_volume | 106 |
creator | Porredon, A. Crocce, M. Elvin-Poole, J. Cawthon, R. Giannini, G. De Vicente, J. Carnero Rosell, A. Ferrero, I. Krause, E. Fang, X. Prat, J. Rodriguez-Monroy, M. Pandey, S. Pocino, A. Castander, F. J. Choi, A. Amon, A. Tutusaus, I. Dodelson, S. Sevilla-Noarbe, I. Fosalba, P. Gaztanaga, E. Alarcon, A. Alves, O. Andrade-Oliveira, F. Baxter, E. Bechtol, K. Becker, M. R. Bernstein, G. M. Blazek, J. Camacho, H. Campos, A. Carrasco Kind, M. Chintalapati, P. Cordero, J. DeRose, J. Di Valentino, E. Doux, C. Eifler, T. F. Everett, S. Ferté, A. Friedrich, O. Gatti, M. Gruen, D. Harrison, I. Hartley, W. G. Herner, K. Huff, E. M. Huterer, D. Jain, B. Jarvis, M. Lee, S. Lemos, P. MacCrann, N. Mena-Fernández, J. Muir, J. Myles, J. Park, Y. Raveri, M. Rosenfeld, R. Ross, A. J. Rykoff, E. S. Samuroff, S. Sánchez, C. Sanchez, E. Sanchez, J. Sanchez Cid, D. Scolnic, D. Secco, L. F. Sheldon, E. Troja, A. Troxel, M. A. Weaverdyck, N. Yanny, B. Zuntz, J. Abbott, T. M. C. Aguena, M. Allam, S. Annis, J. Avila, S. Bacon, D. Bertin, E. Bhargava, S. Brooks, D. Buckley-Geer, E. Burke, D. L. Carretero, J. Costanzi, M. da Costa, L. N. Pereira, M. E. S. Davis, T. M. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Drlica-Wagner, A. Eckert, K. Evrard, A. E. Flaugher, B. Frieman, J. |
description | Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt). |
doi_str_mv | 10.1103/PhysRevD.106.103530 |
format | Article |
fullrecord | <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1906914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03261538v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIVKVfwMXixiGwjpu44Va1hSIFgXgcOFkbx0kDTlLZTkU-gb8mfdDD7o5mZldajeddUrihFNjty6qzr2ozv6EQ9cVCBifeIBhz8AGC-PSIKZx7I2u_oIcRxJzSgfc7R_NNFrUyRUfeWrNRHflUaAgjRtlWO3tHZo2tGt0UpURNZFNbZ7CsnSW5aSpSoMafjkjdWqdMWRcE6-zA-gdRq9pulXbX3UqRJyySstoJxGK11urCO8tRWzU6zKH3cb94ny395PnhcTZNfMl45Pw0zhjIFFKGmGcZl4iYRuNwEkqaUc7HYRayOJI5yomCOMxSzimk8SRg_eSUDb2r_d3GulJYWTolV_1XtZJO0BiimI570_XetEIt1qas0HSiwVIsp4nYcsCCiIZsstkeZHuvNI21RuXHBQpim5D4T6gnIrFPiP0BTWSHWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</title><source>American Physical Society Journals</source><creator>Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; Cawthon, R. ; Giannini, G. ; De Vicente, J. ; Carnero Rosell, A. ; Ferrero, I. ; Krause, E. ; Fang, X. ; Prat, J. ; Rodriguez-Monroy, M. ; Pandey, S. ; Pocino, A. ; Castander, F. J. ; Choi, A. ; Amon, A. ; Tutusaus, I. ; Dodelson, S. ; Sevilla-Noarbe, I. ; Fosalba, P. ; Gaztanaga, E. ; Alarcon, A. ; Alves, O. ; Andrade-Oliveira, F. ; Baxter, E. ; Bechtol, K. ; Becker, M. R. ; Bernstein, G. M. ; Blazek, J. ; Camacho, H. ; Campos, A. ; Carrasco Kind, M. ; Chintalapati, P. ; Cordero, J. ; DeRose, J. ; Di Valentino, E. ; Doux, C. ; Eifler, T. F. ; Everett, S. ; Ferté, A. ; Friedrich, O. ; Gatti, M. ; Gruen, D. ; Harrison, I. ; Hartley, W. G. ; Herner, K. ; Huff, E. M. ; Huterer, D. ; Jain, B. ; Jarvis, M. ; Lee, S. ; Lemos, P. ; MacCrann, N. ; Mena-Fernández, J. ; Muir, J. ; Myles, J. ; Park, Y. ; Raveri, M. ; Rosenfeld, R. ; Ross, A. J. ; Rykoff, E. S. ; Samuroff, S. ; Sánchez, C. ; Sanchez, E. ; Sanchez, J. ; Sanchez Cid, D. ; Scolnic, D. ; Secco, L. F. ; Sheldon, E. ; Troja, A. ; Troxel, M. A. ; Weaverdyck, N. ; Yanny, B. ; Zuntz, J. ; Abbott, T. M. C. ; Aguena, M. ; Allam, S. ; Annis, J. ; Avila, S. ; Bacon, D. ; Bertin, E. ; Bhargava, S. ; Brooks, D. ; Buckley-Geer, E. ; Burke, D. L. ; Carretero, J. ; Costanzi, M. ; da Costa, L. N. ; Pereira, M. E. S. ; Davis, T. M. ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Drlica-Wagner, A. ; Eckert, K. ; Evrard, A. E. ; Flaugher, B. ; Frieman, J.</creator><creatorcontrib>Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; Cawthon, R. ; Giannini, G. ; De Vicente, J. ; Carnero Rosell, A. ; Ferrero, I. ; Krause, E. ; Fang, X. ; Prat, J. ; Rodriguez-Monroy, M. ; Pandey, S. ; Pocino, A. ; Castander, F. J. ; Choi, A. ; Amon, A. ; Tutusaus, I. ; Dodelson, S. ; Sevilla-Noarbe, I. ; Fosalba, P. ; Gaztanaga, E. ; Alarcon, A. ; Alves, O. ; Andrade-Oliveira, F. ; Baxter, E. ; Bechtol, K. ; Becker, M. R. ; Bernstein, G. M. ; Blazek, J. ; Camacho, H. ; Campos, A. ; Carrasco Kind, M. ; Chintalapati, P. ; Cordero, J. ; DeRose, J. ; Di Valentino, E. ; Doux, C. ; Eifler, T. F. ; Everett, S. ; Ferté, A. ; Friedrich, O. ; Gatti, M. ; Gruen, D. ; Harrison, I. ; Hartley, W. G. ; Herner, K. ; Huff, E. M. ; Huterer, D. ; Jain, B. ; Jarvis, M. ; Lee, S. ; Lemos, P. ; MacCrann, N. ; Mena-Fernández, J. ; Muir, J. ; Myles, J. ; Park, Y. ; Raveri, M. ; Rosenfeld, R. ; Ross, A. J. ; Rykoff, E. S. ; Samuroff, S. ; Sánchez, C. ; Sanchez, E. ; Sanchez, J. ; Sanchez Cid, D. ; Scolnic, D. ; Secco, L. F. ; Sheldon, E. ; Troja, A. ; Troxel, M. A. ; Weaverdyck, N. ; Yanny, B. ; Zuntz, J. ; Abbott, T. M. C. ; Aguena, M. ; Allam, S. ; Annis, J. ; Avila, S. ; Bacon, D. ; Bertin, E. ; Bhargava, S. ; Brooks, D. ; Buckley-Geer, E. ; Burke, D. L. ; Carretero, J. ; Costanzi, M. ; da Costa, L. N. ; Pereira, M. E. S. ; Davis, T. M. ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Drlica-Wagner, A. ; Eckert, K. ; Evrard, A. E. ; Flaugher, B. ; Frieman, J. ; DES Collaboration ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.106.103530</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; cosmological parameters ; cosmology ; dark energy ; dark matter ; gravitational lenses ; large scale structure of the universe ; Physics ; sky surveys</subject><ispartof>Physical review. D, 2022-11, Vol.106 (10), Article 103530</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</citedby><cites>FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</cites><orcidid>0000-0002-2762-2024 ; 0000-0001-7039-9078 ; 0000-0002-1510-5214 ; 0000000227622024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03261538$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1906914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Porredon, A.</creatorcontrib><creatorcontrib>Crocce, M.</creatorcontrib><creatorcontrib>Elvin-Poole, J.</creatorcontrib><creatorcontrib>Cawthon, R.</creatorcontrib><creatorcontrib>Giannini, G.</creatorcontrib><creatorcontrib>De Vicente, J.</creatorcontrib><creatorcontrib>Carnero Rosell, A.</creatorcontrib><creatorcontrib>Ferrero, I.</creatorcontrib><creatorcontrib>Krause, E.</creatorcontrib><creatorcontrib>Fang, X.</creatorcontrib><creatorcontrib>Prat, J.</creatorcontrib><creatorcontrib>Rodriguez-Monroy, M.</creatorcontrib><creatorcontrib>Pandey, S.</creatorcontrib><creatorcontrib>Pocino, A.</creatorcontrib><creatorcontrib>Castander, F. J.</creatorcontrib><creatorcontrib>Choi, A.</creatorcontrib><creatorcontrib>Amon, A.</creatorcontrib><creatorcontrib>Tutusaus, I.</creatorcontrib><creatorcontrib>Dodelson, S.</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Gaztanaga, E.</creatorcontrib><creatorcontrib>Alarcon, A.</creatorcontrib><creatorcontrib>Alves, O.</creatorcontrib><creatorcontrib>Andrade-Oliveira, F.</creatorcontrib><creatorcontrib>Baxter, E.</creatorcontrib><creatorcontrib>Bechtol, K.</creatorcontrib><creatorcontrib>Becker, M. R.</creatorcontrib><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Blazek, J.</creatorcontrib><creatorcontrib>Camacho, H.</creatorcontrib><creatorcontrib>Campos, A.</creatorcontrib><creatorcontrib>Carrasco Kind, M.</creatorcontrib><creatorcontrib>Chintalapati, P.</creatorcontrib><creatorcontrib>Cordero, J.</creatorcontrib><creatorcontrib>DeRose, J.</creatorcontrib><creatorcontrib>Di Valentino, E.</creatorcontrib><creatorcontrib>Doux, C.</creatorcontrib><creatorcontrib>Eifler, T. F.</creatorcontrib><creatorcontrib>Everett, S.</creatorcontrib><creatorcontrib>Ferté, A.</creatorcontrib><creatorcontrib>Friedrich, O.</creatorcontrib><creatorcontrib>Gatti, M.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Harrison, I.</creatorcontrib><creatorcontrib>Hartley, W. G.</creatorcontrib><creatorcontrib>Herner, K.</creatorcontrib><creatorcontrib>Huff, E. M.</creatorcontrib><creatorcontrib>Huterer, D.</creatorcontrib><creatorcontrib>Jain, B.</creatorcontrib><creatorcontrib>Jarvis, M.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Lemos, P.</creatorcontrib><creatorcontrib>MacCrann, N.</creatorcontrib><creatorcontrib>Mena-Fernández, J.</creatorcontrib><creatorcontrib>Muir, J.</creatorcontrib><creatorcontrib>Myles, J.</creatorcontrib><creatorcontrib>Park, Y.</creatorcontrib><creatorcontrib>Raveri, M.</creatorcontrib><creatorcontrib>Rosenfeld, R.</creatorcontrib><creatorcontrib>Ross, A. J.</creatorcontrib><creatorcontrib>Rykoff, E. S.</creatorcontrib><creatorcontrib>Samuroff, S.</creatorcontrib><creatorcontrib>Sánchez, C.</creatorcontrib><creatorcontrib>Sanchez, E.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Sanchez Cid, D.</creatorcontrib><creatorcontrib>Scolnic, D.</creatorcontrib><creatorcontrib>Secco, L. F.</creatorcontrib><creatorcontrib>Sheldon, E.</creatorcontrib><creatorcontrib>Troja, A.</creatorcontrib><creatorcontrib>Troxel, M. A.</creatorcontrib><creatorcontrib>Weaverdyck, N.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>Zuntz, J.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Aguena, M.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Annis, J.</creatorcontrib><creatorcontrib>Avila, S.</creatorcontrib><creatorcontrib>Bacon, D.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Bhargava, S.</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><creatorcontrib>Buckley-Geer, E.</creatorcontrib><creatorcontrib>Burke, D. L.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Costanzi, M.</creatorcontrib><creatorcontrib>da Costa, L. N.</creatorcontrib><creatorcontrib>Pereira, M. E. S.</creatorcontrib><creatorcontrib>Davis, T. M.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Diehl, H. T.</creatorcontrib><creatorcontrib>Dietrich, J. P.</creatorcontrib><creatorcontrib>Doel, P.</creatorcontrib><creatorcontrib>Drlica-Wagner, A.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Evrard, A. E.</creatorcontrib><creatorcontrib>Flaugher, B.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</title><title>Physical review. D</title><description>Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>cosmological parameters</subject><subject>cosmology</subject><subject>dark energy</subject><subject>dark matter</subject><subject>gravitational lenses</subject><subject>large scale structure of the universe</subject><subject>Physics</subject><subject>sky surveys</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UctOwzAQjBBIVKVfwMXixiGwjpu44Va1hSIFgXgcOFkbx0kDTlLZTkU-gb8mfdDD7o5mZldajeddUrihFNjty6qzr2ozv6EQ9cVCBifeIBhz8AGC-PSIKZx7I2u_oIcRxJzSgfc7R_NNFrUyRUfeWrNRHflUaAgjRtlWO3tHZo2tGt0UpURNZFNbZ7CsnSW5aSpSoMafjkjdWqdMWRcE6-zA-gdRq9pulXbX3UqRJyySstoJxGK11urCO8tRWzU6zKH3cb94ny395PnhcTZNfMl45Pw0zhjIFFKGmGcZl4iYRuNwEkqaUc7HYRayOJI5yomCOMxSzimk8SRg_eSUDb2r_d3GulJYWTolV_1XtZJO0BiimI570_XetEIt1qas0HSiwVIsp4nYcsCCiIZsstkeZHuvNI21RuXHBQpim5D4T6gnIrFPiP0BTWSHWQ</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Porredon, A.</creator><creator>Crocce, M.</creator><creator>Elvin-Poole, J.</creator><creator>Cawthon, R.</creator><creator>Giannini, G.</creator><creator>De Vicente, J.</creator><creator>Carnero Rosell, A.</creator><creator>Ferrero, I.</creator><creator>Krause, E.</creator><creator>Fang, X.</creator><creator>Prat, J.</creator><creator>Rodriguez-Monroy, M.</creator><creator>Pandey, S.</creator><creator>Pocino, A.</creator><creator>Castander, F. J.</creator><creator>Choi, A.</creator><creator>Amon, A.</creator><creator>Tutusaus, I.</creator><creator>Dodelson, S.</creator><creator>Sevilla-Noarbe, I.</creator><creator>Fosalba, P.</creator><creator>Gaztanaga, E.</creator><creator>Alarcon, A.</creator><creator>Alves, O.</creator><creator>Andrade-Oliveira, F.</creator><creator>Baxter, E.</creator><creator>Bechtol, K.</creator><creator>Becker, M. R.</creator><creator>Bernstein, G. M.</creator><creator>Blazek, J.</creator><creator>Camacho, H.</creator><creator>Campos, A.</creator><creator>Carrasco Kind, M.</creator><creator>Chintalapati, P.</creator><creator>Cordero, J.</creator><creator>DeRose, J.</creator><creator>Di Valentino, E.</creator><creator>Doux, C.</creator><creator>Eifler, T. F.</creator><creator>Everett, S.</creator><creator>Ferté, A.</creator><creator>Friedrich, O.</creator><creator>Gatti, M.</creator><creator>Gruen, D.</creator><creator>Harrison, I.</creator><creator>Hartley, W. G.</creator><creator>Herner, K.</creator><creator>Huff, E. M.</creator><creator>Huterer, D.</creator><creator>Jain, B.</creator><creator>Jarvis, M.</creator><creator>Lee, S.</creator><creator>Lemos, P.</creator><creator>MacCrann, N.</creator><creator>Mena-Fernández, J.</creator><creator>Muir, J.</creator><creator>Myles, J.</creator><creator>Park, Y.</creator><creator>Raveri, M.</creator><creator>Rosenfeld, R.</creator><creator>Ross, A. J.</creator><creator>Rykoff, E. S.</creator><creator>Samuroff, S.</creator><creator>Sánchez, C.</creator><creator>Sanchez, E.</creator><creator>Sanchez, J.</creator><creator>Sanchez Cid, D.</creator><creator>Scolnic, D.</creator><creator>Secco, L. F.</creator><creator>Sheldon, E.</creator><creator>Troja, A.</creator><creator>Troxel, M. A.</creator><creator>Weaverdyck, N.</creator><creator>Yanny, B.</creator><creator>Zuntz, J.</creator><creator>Abbott, T. M. C.</creator><creator>Aguena, M.</creator><creator>Allam, S.</creator><creator>Annis, J.</creator><creator>Avila, S.</creator><creator>Bacon, D.</creator><creator>Bertin, E.</creator><creator>Bhargava, S.</creator><creator>Brooks, D.</creator><creator>Buckley-Geer, E.</creator><creator>Burke, D. L.</creator><creator>Carretero, J.</creator><creator>Costanzi, M.</creator><creator>da Costa, L. N.</creator><creator>Pereira, M. E. S.</creator><creator>Davis, T. M.</creator><creator>Desai, S.</creator><creator>Diehl, H. T.</creator><creator>Dietrich, J. P.</creator><creator>Doel, P.</creator><creator>Drlica-Wagner, A.</creator><creator>Eckert, K.</creator><creator>Evrard, A. E.</creator><creator>Flaugher, B.</creator><creator>Frieman, J.</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2762-2024</orcidid><orcidid>https://orcid.org/0000-0001-7039-9078</orcidid><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><orcidid>https://orcid.org/0000000227622024</orcidid></search><sort><creationdate>20221128</creationdate><title>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</title><author>Porredon, A. ; Crocce, M. ; Elvin-Poole, J. ; Cawthon, R. ; Giannini, G. ; De Vicente, J. ; Carnero Rosell, A. ; Ferrero, I. ; Krause, E. ; Fang, X. ; Prat, J. ; Rodriguez-Monroy, M. ; Pandey, S. ; Pocino, A. ; Castander, F. J. ; Choi, A. ; Amon, A. ; Tutusaus, I. ; Dodelson, S. ; Sevilla-Noarbe, I. ; Fosalba, P. ; Gaztanaga, E. ; Alarcon, A. ; Alves, O. ; Andrade-Oliveira, F. ; Baxter, E. ; Bechtol, K. ; Becker, M. R. ; Bernstein, G. M. ; Blazek, J. ; Camacho, H. ; Campos, A. ; Carrasco Kind, M. ; Chintalapati, P. ; Cordero, J. ; DeRose, J. ; Di Valentino, E. ; Doux, C. ; Eifler, T. F. ; Everett, S. ; Ferté, A. ; Friedrich, O. ; Gatti, M. ; Gruen, D. ; Harrison, I. ; Hartley, W. G. ; Herner, K. ; Huff, E. M. ; Huterer, D. ; Jain, B. ; Jarvis, M. ; Lee, S. ; Lemos, P. ; MacCrann, N. ; Mena-Fernández, J. ; Muir, J. ; Myles, J. ; Park, Y. ; Raveri, M. ; Rosenfeld, R. ; Ross, A. J. ; Rykoff, E. S. ; Samuroff, S. ; Sánchez, C. ; Sanchez, E. ; Sanchez, J. ; Sanchez Cid, D. ; Scolnic, D. ; Secco, L. F. ; Sheldon, E. ; Troja, A. ; Troxel, M. A. ; Weaverdyck, N. ; Yanny, B. ; Zuntz, J. ; Abbott, T. M. C. ; Aguena, M. ; Allam, S. ; Annis, J. ; Avila, S. ; Bacon, D. ; Bertin, E. ; Bhargava, S. ; Brooks, D. ; Buckley-Geer, E. ; Burke, D. L. ; Carretero, J. ; Costanzi, M. ; da Costa, L. N. ; Pereira, M. E. S. ; Davis, T. M. ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Drlica-Wagner, A. ; Eckert, K. ; Evrard, A. E. ; Flaugher, B. ; Frieman, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b9d30cb0b3aafdd7caaab64585c1d17745d5396cfac8e095db7710b9823710713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>cosmological parameters</topic><topic>cosmology</topic><topic>dark energy</topic><topic>dark matter</topic><topic>gravitational lenses</topic><topic>large scale structure of the universe</topic><topic>Physics</topic><topic>sky surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Porredon, A.</creatorcontrib><creatorcontrib>Crocce, M.</creatorcontrib><creatorcontrib>Elvin-Poole, J.</creatorcontrib><creatorcontrib>Cawthon, R.</creatorcontrib><creatorcontrib>Giannini, G.</creatorcontrib><creatorcontrib>De Vicente, J.</creatorcontrib><creatorcontrib>Carnero Rosell, A.</creatorcontrib><creatorcontrib>Ferrero, I.</creatorcontrib><creatorcontrib>Krause, E.</creatorcontrib><creatorcontrib>Fang, X.</creatorcontrib><creatorcontrib>Prat, J.</creatorcontrib><creatorcontrib>Rodriguez-Monroy, M.</creatorcontrib><creatorcontrib>Pandey, S.</creatorcontrib><creatorcontrib>Pocino, A.</creatorcontrib><creatorcontrib>Castander, F. J.</creatorcontrib><creatorcontrib>Choi, A.</creatorcontrib><creatorcontrib>Amon, A.</creatorcontrib><creatorcontrib>Tutusaus, I.</creatorcontrib><creatorcontrib>Dodelson, S.</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I.</creatorcontrib><creatorcontrib>Fosalba, P.</creatorcontrib><creatorcontrib>Gaztanaga, E.</creatorcontrib><creatorcontrib>Alarcon, A.</creatorcontrib><creatorcontrib>Alves, O.</creatorcontrib><creatorcontrib>Andrade-Oliveira, F.</creatorcontrib><creatorcontrib>Baxter, E.</creatorcontrib><creatorcontrib>Bechtol, K.</creatorcontrib><creatorcontrib>Becker, M. R.</creatorcontrib><creatorcontrib>Bernstein, G. M.</creatorcontrib><creatorcontrib>Blazek, J.</creatorcontrib><creatorcontrib>Camacho, H.</creatorcontrib><creatorcontrib>Campos, A.</creatorcontrib><creatorcontrib>Carrasco Kind, M.</creatorcontrib><creatorcontrib>Chintalapati, P.</creatorcontrib><creatorcontrib>Cordero, J.</creatorcontrib><creatorcontrib>DeRose, J.</creatorcontrib><creatorcontrib>Di Valentino, E.</creatorcontrib><creatorcontrib>Doux, C.</creatorcontrib><creatorcontrib>Eifler, T. F.</creatorcontrib><creatorcontrib>Everett, S.</creatorcontrib><creatorcontrib>Ferté, A.</creatorcontrib><creatorcontrib>Friedrich, O.</creatorcontrib><creatorcontrib>Gatti, M.</creatorcontrib><creatorcontrib>Gruen, D.</creatorcontrib><creatorcontrib>Harrison, I.</creatorcontrib><creatorcontrib>Hartley, W. G.</creatorcontrib><creatorcontrib>Herner, K.</creatorcontrib><creatorcontrib>Huff, E. M.</creatorcontrib><creatorcontrib>Huterer, D.</creatorcontrib><creatorcontrib>Jain, B.</creatorcontrib><creatorcontrib>Jarvis, M.</creatorcontrib><creatorcontrib>Lee, S.</creatorcontrib><creatorcontrib>Lemos, P.</creatorcontrib><creatorcontrib>MacCrann, N.</creatorcontrib><creatorcontrib>Mena-Fernández, J.</creatorcontrib><creatorcontrib>Muir, J.</creatorcontrib><creatorcontrib>Myles, J.</creatorcontrib><creatorcontrib>Park, Y.</creatorcontrib><creatorcontrib>Raveri, M.</creatorcontrib><creatorcontrib>Rosenfeld, R.</creatorcontrib><creatorcontrib>Ross, A. J.</creatorcontrib><creatorcontrib>Rykoff, E. S.</creatorcontrib><creatorcontrib>Samuroff, S.</creatorcontrib><creatorcontrib>Sánchez, C.</creatorcontrib><creatorcontrib>Sanchez, E.</creatorcontrib><creatorcontrib>Sanchez, J.</creatorcontrib><creatorcontrib>Sanchez Cid, D.</creatorcontrib><creatorcontrib>Scolnic, D.</creatorcontrib><creatorcontrib>Secco, L. F.</creatorcontrib><creatorcontrib>Sheldon, E.</creatorcontrib><creatorcontrib>Troja, A.</creatorcontrib><creatorcontrib>Troxel, M. A.</creatorcontrib><creatorcontrib>Weaverdyck, N.</creatorcontrib><creatorcontrib>Yanny, B.</creatorcontrib><creatorcontrib>Zuntz, J.</creatorcontrib><creatorcontrib>Abbott, T. M. C.</creatorcontrib><creatorcontrib>Aguena, M.</creatorcontrib><creatorcontrib>Allam, S.</creatorcontrib><creatorcontrib>Annis, J.</creatorcontrib><creatorcontrib>Avila, S.</creatorcontrib><creatorcontrib>Bacon, D.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Bhargava, S.</creatorcontrib><creatorcontrib>Brooks, D.</creatorcontrib><creatorcontrib>Buckley-Geer, E.</creatorcontrib><creatorcontrib>Burke, D. L.</creatorcontrib><creatorcontrib>Carretero, J.</creatorcontrib><creatorcontrib>Costanzi, M.</creatorcontrib><creatorcontrib>da Costa, L. N.</creatorcontrib><creatorcontrib>Pereira, M. E. S.</creatorcontrib><creatorcontrib>Davis, T. M.</creatorcontrib><creatorcontrib>Desai, S.</creatorcontrib><creatorcontrib>Diehl, H. T.</creatorcontrib><creatorcontrib>Dietrich, J. P.</creatorcontrib><creatorcontrib>Doel, P.</creatorcontrib><creatorcontrib>Drlica-Wagner, A.</creatorcontrib><creatorcontrib>Eckert, K.</creatorcontrib><creatorcontrib>Evrard, A. E.</creatorcontrib><creatorcontrib>Flaugher, B.</creatorcontrib><creatorcontrib>Frieman, J.</creatorcontrib><creatorcontrib>DES Collaboration</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Porredon, A.</au><au>Crocce, M.</au><au>Elvin-Poole, J.</au><au>Cawthon, R.</au><au>Giannini, G.</au><au>De Vicente, J.</au><au>Carnero Rosell, A.</au><au>Ferrero, I.</au><au>Krause, E.</au><au>Fang, X.</au><au>Prat, J.</au><au>Rodriguez-Monroy, M.</au><au>Pandey, S.</au><au>Pocino, A.</au><au>Castander, F. J.</au><au>Choi, A.</au><au>Amon, A.</au><au>Tutusaus, I.</au><au>Dodelson, S.</au><au>Sevilla-Noarbe, I.</au><au>Fosalba, P.</au><au>Gaztanaga, E.</au><au>Alarcon, A.</au><au>Alves, O.</au><au>Andrade-Oliveira, F.</au><au>Baxter, E.</au><au>Bechtol, K.</au><au>Becker, M. R.</au><au>Bernstein, G. M.</au><au>Blazek, J.</au><au>Camacho, H.</au><au>Campos, A.</au><au>Carrasco Kind, M.</au><au>Chintalapati, P.</au><au>Cordero, J.</au><au>DeRose, J.</au><au>Di Valentino, E.</au><au>Doux, C.</au><au>Eifler, T. F.</au><au>Everett, S.</au><au>Ferté, A.</au><au>Friedrich, O.</au><au>Gatti, M.</au><au>Gruen, D.</au><au>Harrison, I.</au><au>Hartley, W. G.</au><au>Herner, K.</au><au>Huff, E. M.</au><au>Huterer, D.</au><au>Jain, B.</au><au>Jarvis, M.</au><au>Lee, S.</au><au>Lemos, P.</au><au>MacCrann, N.</au><au>Mena-Fernández, J.</au><au>Muir, J.</au><au>Myles, J.</au><au>Park, Y.</au><au>Raveri, M.</au><au>Rosenfeld, R.</au><au>Ross, A. J.</au><au>Rykoff, E. S.</au><au>Samuroff, S.</au><au>Sánchez, C.</au><au>Sanchez, E.</au><au>Sanchez, J.</au><au>Sanchez Cid, D.</au><au>Scolnic, D.</au><au>Secco, L. F.</au><au>Sheldon, E.</au><au>Troja, A.</au><au>Troxel, M. A.</au><au>Weaverdyck, N.</au><au>Yanny, B.</au><au>Zuntz, J.</au><au>Abbott, T. M. C.</au><au>Aguena, M.</au><au>Allam, S.</au><au>Annis, J.</au><au>Avila, S.</au><au>Bacon, D.</au><au>Bertin, E.</au><au>Bhargava, S.</au><au>Brooks, D.</au><au>Buckley-Geer, E.</au><au>Burke, D. L.</au><au>Carretero, J.</au><au>Costanzi, M.</au><au>da Costa, L. N.</au><au>Pereira, M. E. S.</au><au>Davis, T. M.</au><au>Desai, S.</au><au>Diehl, H. T.</au><au>Dietrich, J. P.</au><au>Doel, P.</au><au>Drlica-Wagner, A.</au><au>Eckert, K.</au><au>Evrard, A. E.</au><au>Flaugher, B.</au><au>Frieman, J.</au><aucorp>DES Collaboration</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample</atitle><jtitle>Physical review. D</jtitle><date>2022-11-28</date><risdate>2022</risdate><volume>106</volume><issue>10</issue><artnum>103530</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31\%$ and in the $\Omega_m-w$ plane by $41\%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.106.103530</doi><orcidid>https://orcid.org/0000-0002-2762-2024</orcidid><orcidid>https://orcid.org/0000-0001-7039-9078</orcidid><orcidid>https://orcid.org/0000-0002-1510-5214</orcidid><orcidid>https://orcid.org/0000000227622024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2022-11, Vol.106 (10), Article 103530 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1906914 |
source | American Physical Society Journals |
subjects | ASTRONOMY AND ASTROPHYSICS Astrophysics cosmological parameters cosmology dark energy dark matter gravitational lenses large scale structure of the universe Physics sky surveys |
title | Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20Energy%20Survey%20Year%203%20results:%20Cosmological%20constraints%20from%20galaxy%20clustering%20and%20galaxy-galaxy%20lensing%20using%20the%20MagLim%20lens%20sample&rft.jtitle=Physical%20review.%20D&rft.au=Porredon,%20A.&rft.aucorp=DES%20Collaboration&rft.date=2022-11-28&rft.volume=106&rft.issue=10&rft.artnum=103530&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.106.103530&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_03261538v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |