Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates

As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-03, Vol.18 (5), p.551-557
Hauptverfasser: Zou, Changwei, Hao, Zhenqi, Luo, Xiangyu, Ye, Shusen, Gao, Qiang, Xu, Miao, Li, Xintong, Cai, Peng, Lin, Chengtian, Zhou, Xingjiang, Lee, Dung-Hai, Wang, Yayu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue 5
container_start_page 551
container_title Nature physics
container_volume 18
creator Zou, Changwei
Hao, Zhenqi
Luo, Xiangyu
Ye, Shusen
Gao, Qiang
Xu, Miao
Li, Xintong
Cai, Peng
Lin, Chengtian
Zhou, Xingjiang
Lee, Dung-Hai
Wang, Yayu
description As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi 2 Sr 2 Ca n  − 1 Cu n O 2 n  + 4 +  δ cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive d -wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands. Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.
doi_str_mv 10.1038/s41567-022-01534-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1906829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663849125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkwRzAFf23GSEVX8SZXoALOV2jdtShsH20HtxjvwhjwJhiDYmO4dvnP06RByCvQCKC8uvYBM5illLKWQcZFu98gIcpGlTBSw__vn_JAceb-iVDAJfERms8qFRq_x4-19adeYVH632WBwjU5836HTtjW9Dk27SLRdosNWY9Jh9eyTpk3sKzpjOzSJ7jtXBfTH5KCu1h5Pfu6YPN1cP07u0unD7f3kappqLmRINcyjTJ4xE_3qumAaoJaZyYSpajCSzhFrgBy0MIgCBatpKU1RIGLOeMXH5GzotT40yusmoF5G2RZ1UFBSWbAyQucD1Dn70qMPamV710YvxaTkhSiBZZFiA6Wd9d5hrTrXbCq3U0DV17xqmFfFedX3vGobQ3wI-Qi3C3R_1f-kPgFhbIAf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663849125</pqid></control><display><type>article</type><title>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zou, Changwei ; Hao, Zhenqi ; Luo, Xiangyu ; Ye, Shusen ; Gao, Qiang ; Xu, Miao ; Li, Xintong ; Cai, Peng ; Lin, Chengtian ; Zhou, Xingjiang ; Lee, Dung-Hai ; Wang, Yayu</creator><creatorcontrib>Zou, Changwei ; Hao, Zhenqi ; Luo, Xiangyu ; Ye, Shusen ; Gao, Qiang ; Xu, Miao ; Li, Xintong ; Cai, Peng ; Lin, Chengtian ; Zhou, Xingjiang ; Lee, Dung-Hai ; Wang, Yayu ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi 2 Sr 2 Ca n  − 1 Cu n O 2 n  + 4 +  δ cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive d -wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands. Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01534-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/995 ; Asymmetry ; Atomic ; Atomic structure ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cuprates ; Doping ; electronic properties and materials ; Electronic structure ; Elementary excitations ; Interference ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optimization ; Phase diagrams ; Phase transitions ; Physics ; Physics and Astronomy ; Scanning tunneling microscopy ; Scattering ; superconducting properties and materials ; Superconductivity ; Superconductors ; Theoretical ; Transition temperature ; Transition temperatures ; Unconventional superconductivity ; Wave dispersion</subject><ispartof>Nature physics, 2022-03, Vol.18 (5), p.551-557</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</citedby><cites>FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</cites><orcidid>0000-0002-4793-5829 ; 0000-0003-2330-1642 ; 0000-0001-6832-5758 ; 0000-0003-4761-2074 ; 0000000168325758 ; 0000000323301642 ; 0000000247935829 ; 0000000347612074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01534-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01534-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1906829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Changwei</creatorcontrib><creatorcontrib>Hao, Zhenqi</creatorcontrib><creatorcontrib>Luo, Xiangyu</creatorcontrib><creatorcontrib>Ye, Shusen</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Cai, Peng</creatorcontrib><creatorcontrib>Lin, Chengtian</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi 2 Sr 2 Ca n  − 1 Cu n O 2 n  + 4 +  δ cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive d -wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands. Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.</description><subject>639/766/119/1003</subject><subject>639/766/119/995</subject><subject>Asymmetry</subject><subject>Atomic</subject><subject>Atomic structure</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cuprates</subject><subject>Doping</subject><subject>electronic properties and materials</subject><subject>Electronic structure</subject><subject>Elementary excitations</subject><subject>Interference</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scanning tunneling microscopy</subject><subject>Scattering</subject><subject>superconducting properties and materials</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Theoretical</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><subject>Unconventional superconductivity</subject><subject>Wave dispersion</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAkwRzAFf23GSEVX8SZXoALOV2jdtShsH20HtxjvwhjwJhiDYmO4dvnP06RByCvQCKC8uvYBM5illLKWQcZFu98gIcpGlTBSw__vn_JAceb-iVDAJfERms8qFRq_x4-19adeYVH632WBwjU5836HTtjW9Dk27SLRdosNWY9Jh9eyTpk3sKzpjOzSJ7jtXBfTH5KCu1h5Pfu6YPN1cP07u0unD7f3kappqLmRINcyjTJ4xE_3qumAaoJaZyYSpajCSzhFrgBy0MIgCBatpKU1RIGLOeMXH5GzotT40yusmoF5G2RZ1UFBSWbAyQucD1Dn70qMPamV710YvxaTkhSiBZZFiA6Wd9d5hrTrXbCq3U0DV17xqmFfFedX3vGobQ3wI-Qi3C3R_1f-kPgFhbIAf</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Zou, Changwei</creator><creator>Hao, Zhenqi</creator><creator>Luo, Xiangyu</creator><creator>Ye, Shusen</creator><creator>Gao, Qiang</creator><creator>Xu, Miao</creator><creator>Li, Xintong</creator><creator>Cai, Peng</creator><creator>Lin, Chengtian</creator><creator>Zhou, Xingjiang</creator><creator>Lee, Dung-Hai</creator><creator>Wang, Yayu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4793-5829</orcidid><orcidid>https://orcid.org/0000-0003-2330-1642</orcidid><orcidid>https://orcid.org/0000-0001-6832-5758</orcidid><orcidid>https://orcid.org/0000-0003-4761-2074</orcidid><orcidid>https://orcid.org/0000000168325758</orcidid><orcidid>https://orcid.org/0000000323301642</orcidid><orcidid>https://orcid.org/0000000247935829</orcidid><orcidid>https://orcid.org/0000000347612074</orcidid></search><sort><creationdate>20220321</creationdate><title>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</title><author>Zou, Changwei ; Hao, Zhenqi ; Luo, Xiangyu ; Ye, Shusen ; Gao, Qiang ; Xu, Miao ; Li, Xintong ; Cai, Peng ; Lin, Chengtian ; Zhou, Xingjiang ; Lee, Dung-Hai ; Wang, Yayu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/995</topic><topic>Asymmetry</topic><topic>Atomic</topic><topic>Atomic structure</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cuprates</topic><topic>Doping</topic><topic>electronic properties and materials</topic><topic>Electronic structure</topic><topic>Elementary excitations</topic><topic>Interference</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scanning tunneling microscopy</topic><topic>Scattering</topic><topic>superconducting properties and materials</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Theoretical</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><topic>Unconventional superconductivity</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Changwei</creatorcontrib><creatorcontrib>Hao, Zhenqi</creatorcontrib><creatorcontrib>Luo, Xiangyu</creatorcontrib><creatorcontrib>Ye, Shusen</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Cai, Peng</creatorcontrib><creatorcontrib>Lin, Chengtian</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Changwei</au><au>Hao, Zhenqi</au><au>Luo, Xiangyu</au><au>Ye, Shusen</au><au>Gao, Qiang</au><au>Xu, Miao</au><au>Li, Xintong</au><au>Cai, Peng</au><au>Lin, Chengtian</au><au>Zhou, Xingjiang</au><au>Lee, Dung-Hai</au><au>Wang, Yayu</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-03-21</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>551</spage><epage>557</epage><pages>551-557</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi 2 Sr 2 Ca n  − 1 Cu n O 2 n  + 4 +  δ cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive d -wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands. Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01534-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4793-5829</orcidid><orcidid>https://orcid.org/0000-0003-2330-1642</orcidid><orcidid>https://orcid.org/0000-0001-6832-5758</orcidid><orcidid>https://orcid.org/0000-0003-4761-2074</orcidid><orcidid>https://orcid.org/0000000168325758</orcidid><orcidid>https://orcid.org/0000000323301642</orcidid><orcidid>https://orcid.org/0000000247935829</orcidid><orcidid>https://orcid.org/0000000347612074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2022-03, Vol.18 (5), p.551-557
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1906829
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/766/119/1003
639/766/119/995
Asymmetry
Atomic
Atomic structure
Classical and Continuum Physics
Coherence
Complex Systems
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Cuprates
Doping
electronic properties and materials
Electronic structure
Elementary excitations
Interference
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optimization
Phase diagrams
Phase transitions
Physics
Physics and Astronomy
Scanning tunneling microscopy
Scattering
superconducting properties and materials
Superconductivity
Superconductors
Theoretical
Transition temperature
Transition temperatures
Unconventional superconductivity
Wave dispersion
title Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%E2%80%93hole%20asymmetric%20superconducting%20coherence%20peaks%20in%20overdoped%20cuprates&rft.jtitle=Nature%20physics&rft.au=Zou,%20Changwei&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-03-21&rft.volume=18&rft.issue=5&rft.spage=551&rft.epage=557&rft.pages=551-557&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01534-x&rft_dat=%3Cproquest_osti_%3E2663849125%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663849125&rft_id=info:pmid/&rfr_iscdi=true