Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates
As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the...
Gespeichert in:
Veröffentlicht in: | Nature physics 2022-03, Vol.18 (5), p.551-557 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 557 |
---|---|
container_issue | 5 |
container_start_page | 551 |
container_title | Nature physics |
container_volume | 18 |
creator | Zou, Changwei Hao, Zhenqi Luo, Xiangyu Ye, Shusen Gao, Qiang Xu, Miao Li, Xintong Cai, Peng Lin, Chengtian Zhou, Xingjiang Lee, Dung-Hai Wang, Yayu |
description | As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi
2
Sr
2
Ca
n
− 1
Cu
n
O
2
n
+ 4 +
δ
cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive
d
-wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands.
Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering. |
doi_str_mv | 10.1038/s41567-022-01534-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1906829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2663849125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkwRzAFf23GSEVX8SZXoALOV2jdtShsH20HtxjvwhjwJhiDYmO4dvnP06RByCvQCKC8uvYBM5illLKWQcZFu98gIcpGlTBSw__vn_JAceb-iVDAJfERms8qFRq_x4-19adeYVH632WBwjU5836HTtjW9Dk27SLRdosNWY9Jh9eyTpk3sKzpjOzSJ7jtXBfTH5KCu1h5Pfu6YPN1cP07u0unD7f3kappqLmRINcyjTJ4xE_3qumAaoJaZyYSpajCSzhFrgBy0MIgCBatpKU1RIGLOeMXH5GzotT40yusmoF5G2RZ1UFBSWbAyQucD1Dn70qMPamV710YvxaTkhSiBZZFiA6Wd9d5hrTrXbCq3U0DV17xqmFfFedX3vGobQ3wI-Qi3C3R_1f-kPgFhbIAf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663849125</pqid></control><display><type>article</type><title>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zou, Changwei ; Hao, Zhenqi ; Luo, Xiangyu ; Ye, Shusen ; Gao, Qiang ; Xu, Miao ; Li, Xintong ; Cai, Peng ; Lin, Chengtian ; Zhou, Xingjiang ; Lee, Dung-Hai ; Wang, Yayu</creator><creatorcontrib>Zou, Changwei ; Hao, Zhenqi ; Luo, Xiangyu ; Ye, Shusen ; Gao, Qiang ; Xu, Miao ; Li, Xintong ; Cai, Peng ; Lin, Chengtian ; Zhou, Xingjiang ; Lee, Dung-Hai ; Wang, Yayu ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi
2
Sr
2
Ca
n
− 1
Cu
n
O
2
n
+ 4 +
δ
cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive
d
-wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands.
Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01534-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/995 ; Asymmetry ; Atomic ; Atomic structure ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Cuprates ; Doping ; electronic properties and materials ; Electronic structure ; Elementary excitations ; Interference ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optimization ; Phase diagrams ; Phase transitions ; Physics ; Physics and Astronomy ; Scanning tunneling microscopy ; Scattering ; superconducting properties and materials ; Superconductivity ; Superconductors ; Theoretical ; Transition temperature ; Transition temperatures ; Unconventional superconductivity ; Wave dispersion</subject><ispartof>Nature physics, 2022-03, Vol.18 (5), p.551-557</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</citedby><cites>FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</cites><orcidid>0000-0002-4793-5829 ; 0000-0003-2330-1642 ; 0000-0001-6832-5758 ; 0000-0003-4761-2074 ; 0000000168325758 ; 0000000323301642 ; 0000000247935829 ; 0000000347612074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-022-01534-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-022-01534-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1906829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Changwei</creatorcontrib><creatorcontrib>Hao, Zhenqi</creatorcontrib><creatorcontrib>Luo, Xiangyu</creatorcontrib><creatorcontrib>Ye, Shusen</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Cai, Peng</creatorcontrib><creatorcontrib>Lin, Chengtian</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi
2
Sr
2
Ca
n
− 1
Cu
n
O
2
n
+ 4 +
δ
cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive
d
-wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands.
Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.</description><subject>639/766/119/1003</subject><subject>639/766/119/995</subject><subject>Asymmetry</subject><subject>Atomic</subject><subject>Atomic structure</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Cuprates</subject><subject>Doping</subject><subject>electronic properties and materials</subject><subject>Electronic structure</subject><subject>Elementary excitations</subject><subject>Interference</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Scanning tunneling microscopy</subject><subject>Scattering</subject><subject>superconducting properties and materials</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Theoretical</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><subject>Unconventional superconductivity</subject><subject>Wave dispersion</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAkwRzAFf23GSEVX8SZXoALOV2jdtShsH20HtxjvwhjwJhiDYmO4dvnP06RByCvQCKC8uvYBM5illLKWQcZFu98gIcpGlTBSw__vn_JAceb-iVDAJfERms8qFRq_x4-19adeYVH632WBwjU5836HTtjW9Dk27SLRdosNWY9Jh9eyTpk3sKzpjOzSJ7jtXBfTH5KCu1h5Pfu6YPN1cP07u0unD7f3kappqLmRINcyjTJ4xE_3qumAaoJaZyYSpajCSzhFrgBy0MIgCBatpKU1RIGLOeMXH5GzotT40yusmoF5G2RZ1UFBSWbAyQucD1Dn70qMPamV710YvxaTkhSiBZZFiA6Wd9d5hrTrXbCq3U0DV17xqmFfFedX3vGobQ3wI-Qi3C3R_1f-kPgFhbIAf</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Zou, Changwei</creator><creator>Hao, Zhenqi</creator><creator>Luo, Xiangyu</creator><creator>Ye, Shusen</creator><creator>Gao, Qiang</creator><creator>Xu, Miao</creator><creator>Li, Xintong</creator><creator>Cai, Peng</creator><creator>Lin, Chengtian</creator><creator>Zhou, Xingjiang</creator><creator>Lee, Dung-Hai</creator><creator>Wang, Yayu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4793-5829</orcidid><orcidid>https://orcid.org/0000-0003-2330-1642</orcidid><orcidid>https://orcid.org/0000-0001-6832-5758</orcidid><orcidid>https://orcid.org/0000-0003-4761-2074</orcidid><orcidid>https://orcid.org/0000000168325758</orcidid><orcidid>https://orcid.org/0000000323301642</orcidid><orcidid>https://orcid.org/0000000247935829</orcidid><orcidid>https://orcid.org/0000000347612074</orcidid></search><sort><creationdate>20220321</creationdate><title>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</title><author>Zou, Changwei ; Hao, Zhenqi ; Luo, Xiangyu ; Ye, Shusen ; Gao, Qiang ; Xu, Miao ; Li, Xintong ; Cai, Peng ; Lin, Chengtian ; Zhou, Xingjiang ; Lee, Dung-Hai ; Wang, Yayu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-c1b473752d481ff82c11f65d54daf1d60beef1171c4dee4e42f096d88eee723a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/995</topic><topic>Asymmetry</topic><topic>Atomic</topic><topic>Atomic structure</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Cuprates</topic><topic>Doping</topic><topic>electronic properties and materials</topic><topic>Electronic structure</topic><topic>Elementary excitations</topic><topic>Interference</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Scanning tunneling microscopy</topic><topic>Scattering</topic><topic>superconducting properties and materials</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Theoretical</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><topic>Unconventional superconductivity</topic><topic>Wave dispersion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Changwei</creatorcontrib><creatorcontrib>Hao, Zhenqi</creatorcontrib><creatorcontrib>Luo, Xiangyu</creatorcontrib><creatorcontrib>Ye, Shusen</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Xu, Miao</creatorcontrib><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Cai, Peng</creatorcontrib><creatorcontrib>Lin, Chengtian</creatorcontrib><creatorcontrib>Zhou, Xingjiang</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Wang, Yayu</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Changwei</au><au>Hao, Zhenqi</au><au>Luo, Xiangyu</au><au>Ye, Shusen</au><au>Gao, Qiang</au><au>Xu, Miao</au><au>Li, Xintong</au><au>Cai, Peng</au><au>Lin, Chengtian</au><au>Zhou, Xingjiang</au><au>Lee, Dung-Hai</au><au>Wang, Yayu</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2022-03-21</date><risdate>2022</risdate><volume>18</volume><issue>5</issue><spage>551</spage><epage>557</epage><pages>551-557</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>As doping increases in cuprate superconductors, the superconducting transition temperature increases to a maximum at the so-called optimal doping, and then decreases in the overdoped regime. In the past few decades, research has primarily focused on the underdoped and optimally doped regions of the phase diagram. Here, phenomena such as the pseudogap and strange metal non-superconducting states make it difficult to determine the superconducting pairing mechanism. More recently, experiments have shown unconventional behaviour in strongly overdoped cuprates, in both the normal and superconducting states. However, a real-space investigation of the unconventional superconductivity in the absence of the pseudogap is lacking, and the superconductor-to-metal phase transition in the overdoped regime remains controversial. Here we use scanning tunnelling microscopy to investigate the atomic-scale electronic structure of overdoped Bi
2
Sr
2
Ca
n
− 1
Cu
n
O
2
n
+ 4 +
δ
cuprates. We show that, at low energies, the spectroscopic maps are well described by dispersive
d
-wave quasiparticle interference patterns. However, as the bias increases to the superconducting coherence peak energy, a periodic and non-dispersive pattern emerges. The position of the coherence peaks exhibits particle–hole asymmetry that modulates with the same period. We propose that this behaviour is due to quasiparticle interference caused by pair-breaking scattering between flat antinodal Bogoliubov bands.
Cuprates that are doped beyond the point that optimizes the critical temperature were thought to be understood. Now, a careful real-space investigation shows unconventional behaviour in the superconducting state caused by pair-breaking scattering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-022-01534-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4793-5829</orcidid><orcidid>https://orcid.org/0000-0003-2330-1642</orcidid><orcidid>https://orcid.org/0000-0001-6832-5758</orcidid><orcidid>https://orcid.org/0000-0003-4761-2074</orcidid><orcidid>https://orcid.org/0000000168325758</orcidid><orcidid>https://orcid.org/0000000323301642</orcidid><orcidid>https://orcid.org/0000000247935829</orcidid><orcidid>https://orcid.org/0000000347612074</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2022-03, Vol.18 (5), p.551-557 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1906829 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/1003 639/766/119/995 Asymmetry Atomic Atomic structure Classical and Continuum Physics Coherence Complex Systems Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Cuprates Doping electronic properties and materials Electronic structure Elementary excitations Interference Mathematical and Computational Physics Molecular Optical and Plasma Physics Optimization Phase diagrams Phase transitions Physics Physics and Astronomy Scanning tunneling microscopy Scattering superconducting properties and materials Superconductivity Superconductors Theoretical Transition temperature Transition temperatures Unconventional superconductivity Wave dispersion |
title | Particle–hole asymmetric superconducting coherence peaks in overdoped cuprates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%E2%80%93hole%20asymmetric%20superconducting%20coherence%20peaks%20in%20overdoped%20cuprates&rft.jtitle=Nature%20physics&rft.au=Zou,%20Changwei&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-03-21&rft.volume=18&rft.issue=5&rft.spage=551&rft.epage=557&rft.pages=551-557&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01534-x&rft_dat=%3Cproquest_osti_%3E2663849125%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663849125&rft_id=info:pmid/&rfr_iscdi=true |