UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics
Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by...
Gespeichert in:
Veröffentlicht in: | Applied geography (Sevenoaks) 2022-12, Vol.151 (NA) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | NA |
container_start_page | |
container_title | Applied geography (Sevenoaks) |
container_volume | 151 |
creator | Tuccillo, Joe Stewart, Robert Rose, Amy Trombley, Nathan Moehl, Jessica Nagle, Nicholas Bhaduri, Budhu |
description | Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1906627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906627</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19066273</originalsourceid><addsrcrecordid>eNqNjM2KwjAURoMoWH_e4eK-kLbaqjsZFJcudF1imtpocm_JbRnn7acLH8DVx4FzvpGIkm2RxUWRybGIZLLO4jxNt1MxY35KKdebTRKJ6hbuCi_U7uEA3KrOKgfe6kBsfe8GJoQ6KG9-KbygpgDm3ToKFh9QGU-PoNrGarBYu96gNgxD0fReIVR_qIYvXohJrRyb5WfnYnU6Xn_OMXFnS9a2M7rRhGh0VyY7medpkX0l_QM-s0ix</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tuccillo, Joe ; Stewart, Robert ; Rose, Amy ; Trombley, Nathan ; Moehl, Jessica ; Nagle, Nicholas ; Bhaduri, Budhu</creator><creatorcontrib>Tuccillo, Joe ; Stewart, Robert ; Rose, Amy ; Trombley, Nathan ; Moehl, Jessica ; Nagle, Nicholas ; Bhaduri, Budhu ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.</description><identifier>ISSN: 0143-6228</identifier><identifier>EISSN: 1873-7730</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>60 APPLIED LIFE SCIENCES ; COVID-19 pandemic ; human dynamics ; planning ; resilience ; spatial microsimulation ; synthetic population</subject><ispartof>Applied geography (Sevenoaks), 2022-12, Vol.151 (NA)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000157088865 ; 0000000259300943 ; 0000000281867559 ; 0000000315551377 ; 0000000315970301 ; 0000000195792562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1906627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuccillo, Joe</creatorcontrib><creatorcontrib>Stewart, Robert</creatorcontrib><creatorcontrib>Rose, Amy</creatorcontrib><creatorcontrib>Trombley, Nathan</creatorcontrib><creatorcontrib>Moehl, Jessica</creatorcontrib><creatorcontrib>Nagle, Nicholas</creatorcontrib><creatorcontrib>Bhaduri, Budhu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</title><title>Applied geography (Sevenoaks)</title><description>Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>COVID-19 pandemic</subject><subject>human dynamics</subject><subject>planning</subject><subject>resilience</subject><subject>spatial microsimulation</subject><subject>synthetic population</subject><issn>0143-6228</issn><issn>1873-7730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjM2KwjAURoMoWH_e4eK-kLbaqjsZFJcudF1imtpocm_JbRnn7acLH8DVx4FzvpGIkm2RxUWRybGIZLLO4jxNt1MxY35KKdebTRKJ6hbuCi_U7uEA3KrOKgfe6kBsfe8GJoQ6KG9-KbygpgDm3ToKFh9QGU-PoNrGarBYu96gNgxD0fReIVR_qIYvXohJrRyb5WfnYnU6Xn_OMXFnS9a2M7rRhGh0VyY7medpkX0l_QM-s0ix</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Tuccillo, Joe</creator><creator>Stewart, Robert</creator><creator>Rose, Amy</creator><creator>Trombley, Nathan</creator><creator>Moehl, Jessica</creator><creator>Nagle, Nicholas</creator><creator>Bhaduri, Budhu</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000157088865</orcidid><orcidid>https://orcid.org/0000000259300943</orcidid><orcidid>https://orcid.org/0000000281867559</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000315970301</orcidid><orcidid>https://orcid.org/0000000195792562</orcidid></search><sort><creationdate>20221215</creationdate><title>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</title><author>Tuccillo, Joe ; Stewart, Robert ; Rose, Amy ; Trombley, Nathan ; Moehl, Jessica ; Nagle, Nicholas ; Bhaduri, Budhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19066273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>COVID-19 pandemic</topic><topic>human dynamics</topic><topic>planning</topic><topic>resilience</topic><topic>spatial microsimulation</topic><topic>synthetic population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuccillo, Joe</creatorcontrib><creatorcontrib>Stewart, Robert</creatorcontrib><creatorcontrib>Rose, Amy</creatorcontrib><creatorcontrib>Trombley, Nathan</creatorcontrib><creatorcontrib>Moehl, Jessica</creatorcontrib><creatorcontrib>Nagle, Nicholas</creatorcontrib><creatorcontrib>Bhaduri, Budhu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied geography (Sevenoaks)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuccillo, Joe</au><au>Stewart, Robert</au><au>Rose, Amy</au><au>Trombley, Nathan</au><au>Moehl, Jessica</au><au>Nagle, Nicholas</au><au>Bhaduri, Budhu</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</atitle><jtitle>Applied geography (Sevenoaks)</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>151</volume><issue>NA</issue><issn>0143-6228</issn><eissn>1873-7730</eissn><abstract>Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000157088865</orcidid><orcidid>https://orcid.org/0000000259300943</orcidid><orcidid>https://orcid.org/0000000281867559</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000315970301</orcidid><orcidid>https://orcid.org/0000000195792562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-6228 |
ispartof | Applied geography (Sevenoaks), 2022-12, Vol.151 (NA) |
issn | 0143-6228 1873-7730 |
language | eng |
recordid | cdi_osti_scitechconnect_1906627 |
source | Access via ScienceDirect (Elsevier) |
subjects | 60 APPLIED LIFE SCIENCES COVID-19 pandemic human dynamics planning resilience spatial microsimulation synthetic population |
title | UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UrbanPop:%20A%20spatial%20microsimulation%20framework%20for%20exploring%20demographic%20influences%20on%20human%20dynamics&rft.jtitle=Applied%20geography%20(Sevenoaks)&rft.au=Tuccillo,%20Joe&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-12-15&rft.volume=151&rft.issue=NA&rft.issn=0143-6228&rft.eissn=1873-7730&rft_id=info:doi/&rft_dat=%3Costi%3E1906627%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |