UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics

Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geography (Sevenoaks) 2022-12, Vol.151 (NA)
Hauptverfasser: Tuccillo, Joe, Stewart, Robert, Rose, Amy, Trombley, Nathan, Moehl, Jessica, Nagle, Nicholas, Bhaduri, Budhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue NA
container_start_page
container_title Applied geography (Sevenoaks)
container_volume 151
creator Tuccillo, Joe
Stewart, Robert
Rose, Amy
Trombley, Nathan
Moehl, Jessica
Nagle, Nicholas
Bhaduri, Budhu
description Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1906627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1906627</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19066273</originalsourceid><addsrcrecordid>eNqNjM2KwjAURoMoWH_e4eK-kLbaqjsZFJcudF1imtpocm_JbRnn7acLH8DVx4FzvpGIkm2RxUWRybGIZLLO4jxNt1MxY35KKdebTRKJ6hbuCi_U7uEA3KrOKgfe6kBsfe8GJoQ6KG9-KbygpgDm3ToKFh9QGU-PoNrGarBYu96gNgxD0fReIVR_qIYvXohJrRyb5WfnYnU6Xn_OMXFnS9a2M7rRhGh0VyY7medpkX0l_QM-s0ix</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tuccillo, Joe ; Stewart, Robert ; Rose, Amy ; Trombley, Nathan ; Moehl, Jessica ; Nagle, Nicholas ; Bhaduri, Budhu</creator><creatorcontrib>Tuccillo, Joe ; Stewart, Robert ; Rose, Amy ; Trombley, Nathan ; Moehl, Jessica ; Nagle, Nicholas ; Bhaduri, Budhu ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.</description><identifier>ISSN: 0143-6228</identifier><identifier>EISSN: 1873-7730</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>60 APPLIED LIFE SCIENCES ; COVID-19 pandemic ; human dynamics ; planning ; resilience ; spatial microsimulation ; synthetic population</subject><ispartof>Applied geography (Sevenoaks), 2022-12, Vol.151 (NA)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000157088865 ; 0000000259300943 ; 0000000281867559 ; 0000000315551377 ; 0000000315970301 ; 0000000195792562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1906627$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tuccillo, Joe</creatorcontrib><creatorcontrib>Stewart, Robert</creatorcontrib><creatorcontrib>Rose, Amy</creatorcontrib><creatorcontrib>Trombley, Nathan</creatorcontrib><creatorcontrib>Moehl, Jessica</creatorcontrib><creatorcontrib>Nagle, Nicholas</creatorcontrib><creatorcontrib>Bhaduri, Budhu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</title><title>Applied geography (Sevenoaks)</title><description>Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>COVID-19 pandemic</subject><subject>human dynamics</subject><subject>planning</subject><subject>resilience</subject><subject>spatial microsimulation</subject><subject>synthetic population</subject><issn>0143-6228</issn><issn>1873-7730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjM2KwjAURoMoWH_e4eK-kLbaqjsZFJcudF1imtpocm_JbRnn7acLH8DVx4FzvpGIkm2RxUWRybGIZLLO4jxNt1MxY35KKdebTRKJ6hbuCi_U7uEA3KrOKgfe6kBsfe8GJoQ6KG9-KbygpgDm3ToKFh9QGU-PoNrGarBYu96gNgxD0fReIVR_qIYvXohJrRyb5WfnYnU6Xn_OMXFnS9a2M7rRhGh0VyY7medpkX0l_QM-s0ix</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Tuccillo, Joe</creator><creator>Stewart, Robert</creator><creator>Rose, Amy</creator><creator>Trombley, Nathan</creator><creator>Moehl, Jessica</creator><creator>Nagle, Nicholas</creator><creator>Bhaduri, Budhu</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000157088865</orcidid><orcidid>https://orcid.org/0000000259300943</orcidid><orcidid>https://orcid.org/0000000281867559</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000315970301</orcidid><orcidid>https://orcid.org/0000000195792562</orcidid></search><sort><creationdate>20221215</creationdate><title>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</title><author>Tuccillo, Joe ; Stewart, Robert ; Rose, Amy ; Trombley, Nathan ; Moehl, Jessica ; Nagle, Nicholas ; Bhaduri, Budhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19066273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>COVID-19 pandemic</topic><topic>human dynamics</topic><topic>planning</topic><topic>resilience</topic><topic>spatial microsimulation</topic><topic>synthetic population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuccillo, Joe</creatorcontrib><creatorcontrib>Stewart, Robert</creatorcontrib><creatorcontrib>Rose, Amy</creatorcontrib><creatorcontrib>Trombley, Nathan</creatorcontrib><creatorcontrib>Moehl, Jessica</creatorcontrib><creatorcontrib>Nagle, Nicholas</creatorcontrib><creatorcontrib>Bhaduri, Budhu</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied geography (Sevenoaks)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuccillo, Joe</au><au>Stewart, Robert</au><au>Rose, Amy</au><au>Trombley, Nathan</au><au>Moehl, Jessica</au><au>Nagle, Nicholas</au><au>Bhaduri, Budhu</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics</atitle><jtitle>Applied geography (Sevenoaks)</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>151</volume><issue>NA</issue><issn>0143-6228</issn><eissn>1873-7730</eissn><abstract>Ensuring the social equity of planning measures in social systems requires an understanding of human dynamics, particularly how individual relationships, activities, and interactions intersect with individual needs. Spatial microsimulation models (SMSMs) support planning for human security goals by representing human dynamics through realistic, georeferenced synthetic populations, that a) provide a complete representation of social systems while b) also protecting individual privacy. In this paper, we present UrbanPop, an open and reproducible SMSM framework for analysis of human dynamics with high spatial, temporal, and demographic resolution. UrbanPop creates synthetic populations of demographically detailed worker and student agents, positioning them first at probable nighttime locations (home), then moving them to probable daytime locations (work/school). Summary aggregations of these populations match the granular detail available at the census block group level in the American Community Survey Summary File (SF), providing realistic approximations of the actual population. UrbanPop users can select particular demographic traits important in their application, resulting in a highly tailored agent population. We first lay out UrbanPop's baseline methodology, including population synthesis, activity modeling, and diagnostics, then demonstrate these capabilities by developing case studies of shifting population distributions and high-risk populations in Knox County, TN during the global COVID-19 pandemic.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000157088865</orcidid><orcidid>https://orcid.org/0000000259300943</orcidid><orcidid>https://orcid.org/0000000281867559</orcidid><orcidid>https://orcid.org/0000000315551377</orcidid><orcidid>https://orcid.org/0000000315970301</orcidid><orcidid>https://orcid.org/0000000195792562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-6228
ispartof Applied geography (Sevenoaks), 2022-12, Vol.151 (NA)
issn 0143-6228
1873-7730
language eng
recordid cdi_osti_scitechconnect_1906627
source Access via ScienceDirect (Elsevier)
subjects 60 APPLIED LIFE SCIENCES
COVID-19 pandemic
human dynamics
planning
resilience
spatial microsimulation
synthetic population
title UrbanPop: A spatial microsimulation framework for exploring demographic influences on human dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UrbanPop:%20A%20spatial%20microsimulation%20framework%20for%20exploring%20demographic%20influences%20on%20human%20dynamics&rft.jtitle=Applied%20geography%20(Sevenoaks)&rft.au=Tuccillo,%20Joe&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-12-15&rft.volume=151&rft.issue=NA&rft.issn=0143-6228&rft.eissn=1873-7730&rft_id=info:doi/&rft_dat=%3Costi%3E1906627%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true