Waste plastic- and coke-derived flash graphene as lubricant additives

Lubricants play an essential role in reducing wear in mechanical systems. Carbon nanomaterial additives, such as graphene, have been found to significantly improve tribological performance when used as lubricant additives. Here, post-consumer plastic and metallurgical coke are converted into turbost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2023-01, Vol.203 (C), p.876-885
Hauptverfasser: Advincula, Paul A., Granja, Victoria, Wyss, Kevin M., Algozeeb, Wala A., Chen, Weiyin, Beckham, Jacob L., Luong, Duy Xuan, Higgs, C. Fred, Tour, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 885
container_issue C
container_start_page 876
container_title Carbon (New York)
container_volume 203
creator Advincula, Paul A.
Granja, Victoria
Wyss, Kevin M.
Algozeeb, Wala A.
Chen, Weiyin
Beckham, Jacob L.
Luong, Duy Xuan
Higgs, C. Fred
Tour, James M.
description Lubricants play an essential role in reducing wear in mechanical systems. Carbon nanomaterial additives, such as graphene, have been found to significantly improve tribological performance when used as lubricant additives. Here, post-consumer plastic and metallurgical coke are converted into turbostratic flash graphene (FG) through flash Joule heating (FJH). The FG is then added to either poly(alpha olefin) 6 or 9 (PAO 6 or PAO 9). Adding waste plastic-derived FG (WPFG) and metallurgical coke-derived FG (MCFG) to lubricants resulted in a significant decrease in the coefficient of friction (CoF), wear scar diameter (WSD), and roughness during four-ball testing. WPFG and MCFG decrease the CoF in PAO 9 by 6% and 9% at 0.1 mg mL−1, respectively, and in PAO 6 by 23% and 6% at 0.5 mg mL−1, respectively. WPFG and MCFG decrease the WSD of steel balls in PAO 9 by 14% and 8% at 0.5 mg mL−1, respectively, and in PAO 6 by 12% and 14% at 0.5 mg mL−1, respectively, by forming a coating-like layer between the metal surfaces. Roughness decreased by 38% and 32% for WPFG and MCFG in PAO 6, respectively, and by 35% and 29% for WPFG and MCFG in PAO 9, respectively. Finally, preliminary life cycle analyses demonstrate that production of FG produces up to 99% less greenhouse gas emissions, requires 98% less energy, and consumes 99.9% less water when compared to conventional production techniques of graphene. Hence, metallurgical coke and waste plastic are shown to be ready feedstocks for high-quality FG lubricant additives. [Display omitted]
doi_str_mv 10.1016/j.carbon.2022.12.035
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1905936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622322010776</els_id><sourcerecordid>S0008622322010776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-bda219655c8b1bee02b8b79bf724a74584458ce6a2f5f0d01ddf20f2eed25b203</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw_Be2sybdr0IsiyfsCCF8VjyMfEzbq2S1IX_Pem1LOH4WWYd15mHkKuOSs5483trrQ6mqEvgQGUHEpWiROy4LKtikp2_JQsGGOyaACqc3KR0i63teT1gqzfdRqRHvZZgi2o7h21wycWDmM4oqM-T7b0I-rDFnukOtH9t4nB6n6k2rkwZle6JGde7xNe_emSvD2sX1dPxebl8Xl1vyls1XZjYZwG3jVCWGm4QWRgpGk741uodVsLWeey2GjwwjPHuHMemAdEB8IAq5bkZs4d8rUq2TCi3dqh79GOindMdFWTTfVssnFIKaJXhxi-dPxRnKmJl9qpmZeaeCkOKvPKa3fzGuYHjgHjlI-9RRfiFO-G8H_AL76xdbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Waste plastic- and coke-derived flash graphene as lubricant additives</title><source>Access via ScienceDirect (Elsevier)</source><creator>Advincula, Paul A. ; Granja, Victoria ; Wyss, Kevin M. ; Algozeeb, Wala A. ; Chen, Weiyin ; Beckham, Jacob L. ; Luong, Duy Xuan ; Higgs, C. Fred ; Tour, James M.</creator><creatorcontrib>Advincula, Paul A. ; Granja, Victoria ; Wyss, Kevin M. ; Algozeeb, Wala A. ; Chen, Weiyin ; Beckham, Jacob L. ; Luong, Duy Xuan ; Higgs, C. Fred ; Tour, James M.</creatorcontrib><description>Lubricants play an essential role in reducing wear in mechanical systems. Carbon nanomaterial additives, such as graphene, have been found to significantly improve tribological performance when used as lubricant additives. Here, post-consumer plastic and metallurgical coke are converted into turbostratic flash graphene (FG) through flash Joule heating (FJH). The FG is then added to either poly(alpha olefin) 6 or 9 (PAO 6 or PAO 9). Adding waste plastic-derived FG (WPFG) and metallurgical coke-derived FG (MCFG) to lubricants resulted in a significant decrease in the coefficient of friction (CoF), wear scar diameter (WSD), and roughness during four-ball testing. WPFG and MCFG decrease the CoF in PAO 9 by 6% and 9% at 0.1 mg mL−1, respectively, and in PAO 6 by 23% and 6% at 0.5 mg mL−1, respectively. WPFG and MCFG decrease the WSD of steel balls in PAO 9 by 14% and 8% at 0.5 mg mL−1, respectively, and in PAO 6 by 12% and 14% at 0.5 mg mL−1, respectively, by forming a coating-like layer between the metal surfaces. Roughness decreased by 38% and 32% for WPFG and MCFG in PAO 6, respectively, and by 35% and 29% for WPFG and MCFG in PAO 9, respectively. Finally, preliminary life cycle analyses demonstrate that production of FG produces up to 99% less greenhouse gas emissions, requires 98% less energy, and consumes 99.9% less water when compared to conventional production techniques of graphene. Hence, metallurgical coke and waste plastic are shown to be ready feedstocks for high-quality FG lubricant additives. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2022.12.035</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Flash graphene ; Lubricant additives ; Metallurgical coke ; Waste plastic</subject><ispartof>Carbon (New York), 2023-01, Vol.203 (C), p.876-885</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-bda219655c8b1bee02b8b79bf724a74584458ce6a2f5f0d01ddf20f2eed25b203</citedby><cites>FETCH-LOGICAL-c379t-bda219655c8b1bee02b8b79bf724a74584458ce6a2f5f0d01ddf20f2eed25b203</cites><orcidid>0000-0002-8479-9328 ; 0000000284799328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2022.12.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1905936$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Advincula, Paul A.</creatorcontrib><creatorcontrib>Granja, Victoria</creatorcontrib><creatorcontrib>Wyss, Kevin M.</creatorcontrib><creatorcontrib>Algozeeb, Wala A.</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Beckham, Jacob L.</creatorcontrib><creatorcontrib>Luong, Duy Xuan</creatorcontrib><creatorcontrib>Higgs, C. Fred</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Waste plastic- and coke-derived flash graphene as lubricant additives</title><title>Carbon (New York)</title><description>Lubricants play an essential role in reducing wear in mechanical systems. Carbon nanomaterial additives, such as graphene, have been found to significantly improve tribological performance when used as lubricant additives. Here, post-consumer plastic and metallurgical coke are converted into turbostratic flash graphene (FG) through flash Joule heating (FJH). The FG is then added to either poly(alpha olefin) 6 or 9 (PAO 6 or PAO 9). Adding waste plastic-derived FG (WPFG) and metallurgical coke-derived FG (MCFG) to lubricants resulted in a significant decrease in the coefficient of friction (CoF), wear scar diameter (WSD), and roughness during four-ball testing. WPFG and MCFG decrease the CoF in PAO 9 by 6% and 9% at 0.1 mg mL−1, respectively, and in PAO 6 by 23% and 6% at 0.5 mg mL−1, respectively. WPFG and MCFG decrease the WSD of steel balls in PAO 9 by 14% and 8% at 0.5 mg mL−1, respectively, and in PAO 6 by 12% and 14% at 0.5 mg mL−1, respectively, by forming a coating-like layer between the metal surfaces. Roughness decreased by 38% and 32% for WPFG and MCFG in PAO 6, respectively, and by 35% and 29% for WPFG and MCFG in PAO 9, respectively. Finally, preliminary life cycle analyses demonstrate that production of FG produces up to 99% less greenhouse gas emissions, requires 98% less energy, and consumes 99.9% less water when compared to conventional production techniques of graphene. Hence, metallurgical coke and waste plastic are shown to be ready feedstocks for high-quality FG lubricant additives. [Display omitted]</description><subject>Flash graphene</subject><subject>Lubricant additives</subject><subject>Metallurgical coke</subject><subject>Waste plastic</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw_Be2sybdr0IsiyfsCCF8VjyMfEzbq2S1IX_Pem1LOH4WWYd15mHkKuOSs5483trrQ6mqEvgQGUHEpWiROy4LKtikp2_JQsGGOyaACqc3KR0i63teT1gqzfdRqRHvZZgi2o7h21wycWDmM4oqM-T7b0I-rDFnukOtH9t4nB6n6k2rkwZle6JGde7xNe_emSvD2sX1dPxebl8Xl1vyls1XZjYZwG3jVCWGm4QWRgpGk741uodVsLWeey2GjwwjPHuHMemAdEB8IAq5bkZs4d8rUq2TCi3dqh79GOindMdFWTTfVssnFIKaJXhxi-dPxRnKmJl9qpmZeaeCkOKvPKa3fzGuYHjgHjlI-9RRfiFO-G8H_AL76xdbA</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Advincula, Paul A.</creator><creator>Granja, Victoria</creator><creator>Wyss, Kevin M.</creator><creator>Algozeeb, Wala A.</creator><creator>Chen, Weiyin</creator><creator>Beckham, Jacob L.</creator><creator>Luong, Duy Xuan</creator><creator>Higgs, C. Fred</creator><creator>Tour, James M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000000284799328</orcidid></search><sort><creationdate>20230125</creationdate><title>Waste plastic- and coke-derived flash graphene as lubricant additives</title><author>Advincula, Paul A. ; Granja, Victoria ; Wyss, Kevin M. ; Algozeeb, Wala A. ; Chen, Weiyin ; Beckham, Jacob L. ; Luong, Duy Xuan ; Higgs, C. Fred ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-bda219655c8b1bee02b8b79bf724a74584458ce6a2f5f0d01ddf20f2eed25b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Flash graphene</topic><topic>Lubricant additives</topic><topic>Metallurgical coke</topic><topic>Waste plastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Advincula, Paul A.</creatorcontrib><creatorcontrib>Granja, Victoria</creatorcontrib><creatorcontrib>Wyss, Kevin M.</creatorcontrib><creatorcontrib>Algozeeb, Wala A.</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Beckham, Jacob L.</creatorcontrib><creatorcontrib>Luong, Duy Xuan</creatorcontrib><creatorcontrib>Higgs, C. Fred</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Advincula, Paul A.</au><au>Granja, Victoria</au><au>Wyss, Kevin M.</au><au>Algozeeb, Wala A.</au><au>Chen, Weiyin</au><au>Beckham, Jacob L.</au><au>Luong, Duy Xuan</au><au>Higgs, C. Fred</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waste plastic- and coke-derived flash graphene as lubricant additives</atitle><jtitle>Carbon (New York)</jtitle><date>2023-01-25</date><risdate>2023</risdate><volume>203</volume><issue>C</issue><spage>876</spage><epage>885</epage><pages>876-885</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Lubricants play an essential role in reducing wear in mechanical systems. Carbon nanomaterial additives, such as graphene, have been found to significantly improve tribological performance when used as lubricant additives. Here, post-consumer plastic and metallurgical coke are converted into turbostratic flash graphene (FG) through flash Joule heating (FJH). The FG is then added to either poly(alpha olefin) 6 or 9 (PAO 6 or PAO 9). Adding waste plastic-derived FG (WPFG) and metallurgical coke-derived FG (MCFG) to lubricants resulted in a significant decrease in the coefficient of friction (CoF), wear scar diameter (WSD), and roughness during four-ball testing. WPFG and MCFG decrease the CoF in PAO 9 by 6% and 9% at 0.1 mg mL−1, respectively, and in PAO 6 by 23% and 6% at 0.5 mg mL−1, respectively. WPFG and MCFG decrease the WSD of steel balls in PAO 9 by 14% and 8% at 0.5 mg mL−1, respectively, and in PAO 6 by 12% and 14% at 0.5 mg mL−1, respectively, by forming a coating-like layer between the metal surfaces. Roughness decreased by 38% and 32% for WPFG and MCFG in PAO 6, respectively, and by 35% and 29% for WPFG and MCFG in PAO 9, respectively. Finally, preliminary life cycle analyses demonstrate that production of FG produces up to 99% less greenhouse gas emissions, requires 98% less energy, and consumes 99.9% less water when compared to conventional production techniques of graphene. Hence, metallurgical coke and waste plastic are shown to be ready feedstocks for high-quality FG lubricant additives. [Display omitted]</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2022.12.035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000000284799328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2023-01, Vol.203 (C), p.876-885
issn 0008-6223
1873-3891
language eng
recordid cdi_osti_scitechconnect_1905936
source Access via ScienceDirect (Elsevier)
subjects Flash graphene
Lubricant additives
Metallurgical coke
Waste plastic
title Waste plastic- and coke-derived flash graphene as lubricant additives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waste%20plastic-%20and%20coke-derived%20flash%20graphene%20as%20lubricant%20additives&rft.jtitle=Carbon%20(New%20York)&rft.au=Advincula,%20Paul%20A.&rft.date=2023-01-25&rft.volume=203&rft.issue=C&rft.spage=876&rft.epage=885&rft.pages=876-885&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2022.12.035&rft_dat=%3Celsevier_osti_%3ES0008622322010776%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0008622322010776&rfr_iscdi=true