Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields

Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-12, Vol.13 (49), p.11571-11580
Hauptverfasser: Kolmer, Marek, Ko, Wonhee, Hall, Joseph, Chen, Shen, Zhang, Jianhua, Zhao, Haijun, Ke, Liqin, Wang, Cai-Zhuang, Li, An-Ping, Tringides, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11580
container_issue 49
container_start_page 11571
container_title The journal of physical chemistry letters
container_volume 13
creator Kolmer, Marek
Ko, Wonhee
Hall, Joseph
Chen, Shen
Zhang, Jianhua
Zhao, Haijun
Ke, Liqin
Wang, Cai-Zhuang
Li, An-Ping
Tringides, Michael C.
description Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.
doi_str_mv 10.1021/acs.jpclett.2c02407
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1905244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753315321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwBEjIYsVmpv5LHC_p0HZGqsSisLYc56bj4jjBdirliXhNPE1ArFjZvv7OuVf3FMV7grcEU3KpTdw-jsZBSltqMOVYvCjOieT1RpC6fPnP_ax4E-MjxpXEtXhdnLGKi7KS1Xnx6yqA_mH9Axo6dPBPEKIdPLqf-x5SmJH2bS4nCE7PENC1A5PC4K1Bu2Ea3UloPbqyy_dt0OMRPKA9ZMkQU5hMmgKgZkb360M7dOhHBz34pNOpWe68tw_H1Txbf7FxdNo8I-jGgmvj2-JVp12Ed-t5UXy_uf6222_uvt4edp_vNpoTkTYdayvDBSlpJZlouGwk55S1ddcwaGrcAuWsopxUptXcmFI0jTSs0sCk7AhhF8XHxTcPb1U0NoE5msH7PJoiEpeU8wx9WqAxDD8niEn1NhpwTnsYpqioKBkjJaMnP7agJq8jBujUGGyvw6wIVqcYVY5RrTGqNcas-rA2mJoe2r-aP7ll4HIBntXDFHxeyn8tfwMmjK-e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753315321</pqid></control><display><type>article</type><title>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</title><source>American Chemical Society Journals</source><creator>Kolmer, Marek ; Ko, Wonhee ; Hall, Joseph ; Chen, Shen ; Zhang, Jianhua ; Zhao, Haijun ; Ke, Liqin ; Wang, Cai-Zhuang ; Li, An-Ping ; Tringides, Michael C.</creator><creatorcontrib>Kolmer, Marek ; Ko, Wonhee ; Hall, Joseph ; Chen, Shen ; Zhang, Jianhua ; Zhao, Haijun ; Ke, Liqin ; Wang, Cai-Zhuang ; Li, An-Ping ; Tringides, Michael C. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02407</identifier><identifier>PMID: 36475696</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>band structure manipulation ; epitaxial 2D materials ; graphene intercalation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Physical Insights into Materials and Molecular Properties ; rare earths ; scanning tunneling microscopy and spectroscopy ; synthesis and processing</subject><ispartof>The journal of physical chemistry letters, 2022-12, Vol.13 (49), p.11571-11580</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</citedby><cites>FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</cites><orcidid>0000-0002-0269-4785 ; 0000-0003-4400-7493 ; 0000-0002-6786-9697 ; 0000-0001-5003-7280 ; 0000-0002-4405-8031 ; 0000-0002-6155-1485 ; 0000000261551485 ; 0000000150037280 ; 0000000202694785 ; 0000000344007493 ; 0000000267869697 ; 0000000244058031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36475696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1905244$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>Hall, Joseph</creatorcontrib><creatorcontrib>Chen, Shen</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Zhao, Haijun</creatorcontrib><creatorcontrib>Ke, Liqin</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Tringides, Michael C.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.</description><subject>band structure manipulation</subject><subject>epitaxial 2D materials</subject><subject>graphene intercalation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Physical Insights into Materials and Molecular Properties</subject><subject>rare earths</subject><subject>scanning tunneling microscopy and spectroscopy</subject><subject>synthesis and processing</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEoqXwBEjIYsVmpv5LHC_p0HZGqsSisLYc56bj4jjBdirliXhNPE1ArFjZvv7OuVf3FMV7grcEU3KpTdw-jsZBSltqMOVYvCjOieT1RpC6fPnP_ax4E-MjxpXEtXhdnLGKi7KS1Xnx6yqA_mH9Axo6dPBPEKIdPLqf-x5SmJH2bS4nCE7PENC1A5PC4K1Bu2Ea3UloPbqyy_dt0OMRPKA9ZMkQU5hMmgKgZkb360M7dOhHBz34pNOpWe68tw_H1Txbf7FxdNo8I-jGgmvj2-JVp12Ed-t5UXy_uf6222_uvt4edp_vNpoTkTYdayvDBSlpJZlouGwk55S1ddcwaGrcAuWsopxUptXcmFI0jTSs0sCk7AhhF8XHxTcPb1U0NoE5msH7PJoiEpeU8wx9WqAxDD8niEn1NhpwTnsYpqioKBkjJaMnP7agJq8jBujUGGyvw6wIVqcYVY5RrTGqNcas-rA2mJoe2r-aP7ll4HIBntXDFHxeyn8tfwMmjK-e</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Kolmer, Marek</creator><creator>Ko, Wonhee</creator><creator>Hall, Joseph</creator><creator>Chen, Shen</creator><creator>Zhang, Jianhua</creator><creator>Zhao, Haijun</creator><creator>Ke, Liqin</creator><creator>Wang, Cai-Zhuang</creator><creator>Li, An-Ping</creator><creator>Tringides, Michael C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0001-5003-7280</orcidid><orcidid>https://orcid.org/0000-0002-4405-8031</orcidid><orcidid>https://orcid.org/0000-0002-6155-1485</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000150037280</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000244058031</orcidid></search><sort><creationdate>20221215</creationdate><title>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</title><author>Kolmer, Marek ; Ko, Wonhee ; Hall, Joseph ; Chen, Shen ; Zhang, Jianhua ; Zhao, Haijun ; Ke, Liqin ; Wang, Cai-Zhuang ; Li, An-Ping ; Tringides, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>band structure manipulation</topic><topic>epitaxial 2D materials</topic><topic>graphene intercalation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Physical Insights into Materials and Molecular Properties</topic><topic>rare earths</topic><topic>scanning tunneling microscopy and spectroscopy</topic><topic>synthesis and processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>Hall, Joseph</creatorcontrib><creatorcontrib>Chen, Shen</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Zhao, Haijun</creatorcontrib><creatorcontrib>Ke, Liqin</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Tringides, Michael C.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolmer, Marek</au><au>Ko, Wonhee</au><au>Hall, Joseph</au><au>Chen, Shen</au><au>Zhang, Jianhua</au><au>Zhao, Haijun</au><au>Ke, Liqin</au><au>Wang, Cai-Zhuang</au><au>Li, An-Ping</au><au>Tringides, Michael C.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-12-15</date><risdate>2022</risdate><volume>13</volume><issue>49</issue><spage>11571</spage><epage>11580</epage><pages>11571-11580</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36475696</pmid><doi>10.1021/acs.jpclett.2c02407</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0001-5003-7280</orcidid><orcidid>https://orcid.org/0000-0002-4405-8031</orcidid><orcidid>https://orcid.org/0000-0002-6155-1485</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000150037280</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000244058031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-12, Vol.13 (49), p.11571-11580
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1905244
source American Chemical Society Journals
subjects band structure manipulation
epitaxial 2D materials
graphene intercalation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Physical Insights into Materials and Molecular Properties
rare earths
scanning tunneling microscopy and spectroscopy
synthesis and processing
title Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20of%20Inversion%20Symmetry%20and%20Interlayer%20Electronic%20Coupling%20in%20Bilayer%20Graphene%20Heterostructure%20by%20Structural%20Implementation%20of%20High%20Electric%20Displacement%20Fields&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Kolmer,%20Marek&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2022-12-15&rft.volume=13&rft.issue=49&rft.spage=11571&rft.epage=11580&rft.pages=11571-11580&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02407&rft_dat=%3Cproquest_osti_%3E2753315321%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753315321&rft_id=info:pmid/36475696&rfr_iscdi=true