Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields
Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here,...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2022-12, Vol.13 (49), p.11571-11580 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11580 |
---|---|
container_issue | 49 |
container_start_page | 11571 |
container_title | The journal of physical chemistry letters |
container_volume | 13 |
creator | Kolmer, Marek Ko, Wonhee Hall, Joseph Chen, Shen Zhang, Jianhua Zhao, Haijun Ke, Liqin Wang, Cai-Zhuang Li, An-Ping Tringides, Michael C. |
description | Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields. |
doi_str_mv | 10.1021/acs.jpclett.2c02407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1905244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753315321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEoqXwBEjIYsVmpv5LHC_p0HZGqsSisLYc56bj4jjBdirliXhNPE1ArFjZvv7OuVf3FMV7grcEU3KpTdw-jsZBSltqMOVYvCjOieT1RpC6fPnP_ax4E-MjxpXEtXhdnLGKi7KS1Xnx6yqA_mH9Axo6dPBPEKIdPLqf-x5SmJH2bS4nCE7PENC1A5PC4K1Bu2Ea3UloPbqyy_dt0OMRPKA9ZMkQU5hMmgKgZkb360M7dOhHBz34pNOpWe68tw_H1Txbf7FxdNo8I-jGgmvj2-JVp12Ed-t5UXy_uf6222_uvt4edp_vNpoTkTYdayvDBSlpJZlouGwk55S1ddcwaGrcAuWsopxUptXcmFI0jTSs0sCk7AhhF8XHxTcPb1U0NoE5msH7PJoiEpeU8wx9WqAxDD8niEn1NhpwTnsYpqioKBkjJaMnP7agJq8jBujUGGyvw6wIVqcYVY5RrTGqNcas-rA2mJoe2r-aP7ll4HIBntXDFHxeyn8tfwMmjK-e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753315321</pqid></control><display><type>article</type><title>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</title><source>American Chemical Society Journals</source><creator>Kolmer, Marek ; Ko, Wonhee ; Hall, Joseph ; Chen, Shen ; Zhang, Jianhua ; Zhao, Haijun ; Ke, Liqin ; Wang, Cai-Zhuang ; Li, An-Ping ; Tringides, Michael C.</creator><creatorcontrib>Kolmer, Marek ; Ko, Wonhee ; Hall, Joseph ; Chen, Shen ; Zhang, Jianhua ; Zhao, Haijun ; Ke, Liqin ; Wang, Cai-Zhuang ; Li, An-Ping ; Tringides, Michael C. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02407</identifier><identifier>PMID: 36475696</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>band structure manipulation ; epitaxial 2D materials ; graphene intercalation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Physical Insights into Materials and Molecular Properties ; rare earths ; scanning tunneling microscopy and spectroscopy ; synthesis and processing</subject><ispartof>The journal of physical chemistry letters, 2022-12, Vol.13 (49), p.11571-11580</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</citedby><cites>FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</cites><orcidid>0000-0002-0269-4785 ; 0000-0003-4400-7493 ; 0000-0002-6786-9697 ; 0000-0001-5003-7280 ; 0000-0002-4405-8031 ; 0000-0002-6155-1485 ; 0000000261551485 ; 0000000150037280 ; 0000000202694785 ; 0000000344007493 ; 0000000267869697 ; 0000000244058031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36475696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1905244$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>Hall, Joseph</creatorcontrib><creatorcontrib>Chen, Shen</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Zhao, Haijun</creatorcontrib><creatorcontrib>Ke, Liqin</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Tringides, Michael C.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.</description><subject>band structure manipulation</subject><subject>epitaxial 2D materials</subject><subject>graphene intercalation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Physical Insights into Materials and Molecular Properties</subject><subject>rare earths</subject><subject>scanning tunneling microscopy and spectroscopy</subject><subject>synthesis and processing</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEoqXwBEjIYsVmpv5LHC_p0HZGqsSisLYc56bj4jjBdirliXhNPE1ArFjZvv7OuVf3FMV7grcEU3KpTdw-jsZBSltqMOVYvCjOieT1RpC6fPnP_ax4E-MjxpXEtXhdnLGKi7KS1Xnx6yqA_mH9Axo6dPBPEKIdPLqf-x5SmJH2bS4nCE7PENC1A5PC4K1Bu2Ea3UloPbqyy_dt0OMRPKA9ZMkQU5hMmgKgZkb360M7dOhHBz34pNOpWe68tw_H1Txbf7FxdNo8I-jGgmvj2-JVp12Ed-t5UXy_uf6222_uvt4edp_vNpoTkTYdayvDBSlpJZlouGwk55S1ddcwaGrcAuWsopxUptXcmFI0jTSs0sCk7AhhF8XHxTcPb1U0NoE5msH7PJoiEpeU8wx9WqAxDD8niEn1NhpwTnsYpqioKBkjJaMnP7agJq8jBujUGGyvw6wIVqcYVY5RrTGqNcas-rA2mJoe2r-aP7ll4HIBntXDFHxeyn8tfwMmjK-e</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Kolmer, Marek</creator><creator>Ko, Wonhee</creator><creator>Hall, Joseph</creator><creator>Chen, Shen</creator><creator>Zhang, Jianhua</creator><creator>Zhao, Haijun</creator><creator>Ke, Liqin</creator><creator>Wang, Cai-Zhuang</creator><creator>Li, An-Ping</creator><creator>Tringides, Michael C.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0001-5003-7280</orcidid><orcidid>https://orcid.org/0000-0002-4405-8031</orcidid><orcidid>https://orcid.org/0000-0002-6155-1485</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000150037280</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000244058031</orcidid></search><sort><creationdate>20221215</creationdate><title>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</title><author>Kolmer, Marek ; Ko, Wonhee ; Hall, Joseph ; Chen, Shen ; Zhang, Jianhua ; Zhao, Haijun ; Ke, Liqin ; Wang, Cai-Zhuang ; Li, An-Ping ; Tringides, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-f3d6c471526937b49b94423d8fb3eb80de24362416cda4cc57bb9c36ae399f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>band structure manipulation</topic><topic>epitaxial 2D materials</topic><topic>graphene intercalation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Physical Insights into Materials and Molecular Properties</topic><topic>rare earths</topic><topic>scanning tunneling microscopy and spectroscopy</topic><topic>synthesis and processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>Hall, Joseph</creatorcontrib><creatorcontrib>Chen, Shen</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Zhao, Haijun</creatorcontrib><creatorcontrib>Ke, Liqin</creatorcontrib><creatorcontrib>Wang, Cai-Zhuang</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Tringides, Michael C.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolmer, Marek</au><au>Ko, Wonhee</au><au>Hall, Joseph</au><au>Chen, Shen</au><au>Zhang, Jianhua</au><au>Zhao, Haijun</au><au>Ke, Liqin</au><au>Wang, Cai-Zhuang</au><au>Li, An-Ping</au><au>Tringides, Michael C.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-12-15</date><risdate>2022</risdate><volume>13</volume><issue>49</issue><spage>11571</spage><epage>11580</epage><pages>11571-11580</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Controlling the interlayer coupling in two-dimensional (2D) materials generates novel electronic and topological phases. Its effective implementation is commonly done with a transverse electric field. However, phases generated by high displacement fields are elusive in this standard approach. Here, we introduce an exceptionally large displacement field by structural modification of a model system: AB-stacked bilayer graphene (BLG) on a SiC(0001) surface. We show that upon intercalation of gadolinium, electronic states in the top graphene layers exhibit a significant difference in the on-site potential energy, which effectively breaks the interlayer coupling between them. As a result, for energies close to the corresponding Dirac points, the BLG system behaves like two electronically isolated single graphene layers. This is proven by local scanning tunneling microscopy (STM)/spectroscopy, corroborated by density functional theory, tight binding, and multiprobe STM transport. The work presents metal intercalation as a promising approach for the synthesis of 2D graphene heterostructures with electronic phases generated by giant displacement fields.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36475696</pmid><doi>10.1021/acs.jpclett.2c02407</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0269-4785</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0001-5003-7280</orcidid><orcidid>https://orcid.org/0000-0002-4405-8031</orcidid><orcidid>https://orcid.org/0000-0002-6155-1485</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000150037280</orcidid><orcidid>https://orcid.org/0000000202694785</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000244058031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2022-12, Vol.13 (49), p.11571-11580 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_1905244 |
source | American Chemical Society Journals |
subjects | band structure manipulation epitaxial 2D materials graphene intercalation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Physical Insights into Materials and Molecular Properties rare earths scanning tunneling microscopy and spectroscopy synthesis and processing |
title | Breaking of Inversion Symmetry and Interlayer Electronic Coupling in Bilayer Graphene Heterostructure by Structural Implementation of High Electric Displacement Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20of%20Inversion%20Symmetry%20and%20Interlayer%20Electronic%20Coupling%20in%20Bilayer%20Graphene%20Heterostructure%20by%20Structural%20Implementation%20of%20High%20Electric%20Displacement%20Fields&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Kolmer,%20Marek&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2022-12-15&rft.volume=13&rft.issue=49&rft.spage=11571&rft.epage=11580&rft.pages=11571-11580&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02407&rft_dat=%3Cproquest_osti_%3E2753315321%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753315321&rft_id=info:pmid/36475696&rfr_iscdi=true |