Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s
Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2020-06, Vol.477 (11), p.2055-2069 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2069 |
---|---|
container_issue | 11 |
container_start_page | 2055 |
container_title | Biochemical journal |
container_volume | 477 |
creator | Joshi, Jaya Beaudoin, Guillaume A W Patterson, Jenelle A García-García, Jorge D Belisle, Catherine E Chang, Lan-Yen Li, Lei Duncan, Owen Millar, A Harvey Hanson, Andrew D |
description | Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period. |
doi_str_mv | 10.1042/BCJ20200297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1905231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406308042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-6570d1b560b4f47a947870acb3b0076c1726789f2e3a9487ef7c787f5bb597ce3</originalsourceid><addsrcrecordid>eNpN0M9LwzAUwPEgipvTk3cpngSpvvxo0x7d8Mdk6GWeQ5q-YqS_bFJx_70Zm-IpkPfJI3wJOadwQ0Gw2_nimQEDYLk8IFMqJMSZZNkhmQJLRZwCoxNy4twHABUg4JhMOBOCSpFNycvcdratuqHR3ppIt2WE3z0OtsHW6zrCL1tiazAKJHKjNbYMt1tmdJhvto_6Wrc-Wj8thTslR5WuHZ7tzxl5e7hfL57i1evjcnG3ig3LuI_TREJJiySFQlRC6lzITII2BS8AZGqoZKnM8oohD7NMYiVNEFVSFEkuDfIZudzt7Zy3yhnr0bybrm3ReEVzSBinAV3tUD90nyM6rxrrDNbhu9iNTjEBKYcsNAz0ekfN0Dk3YKX6kEAPG0VBbSurf5WDvtgvHosGyz_7m5X_ALL-dWU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406308042</pqid></control><display><type>article</type><title>Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s</title><source>MEDLINE</source><source>Portland Press Electronic Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joshi, Jaya ; Beaudoin, Guillaume A W ; Patterson, Jenelle A ; García-García, Jorge D ; Belisle, Catherine E ; Chang, Lan-Yen ; Li, Lei ; Duncan, Owen ; Millar, A Harvey ; Hanson, Andrew D</creator><creatorcontrib>Joshi, Jaya ; Beaudoin, Guillaume A W ; Patterson, Jenelle A ; García-García, Jorge D ; Belisle, Catherine E ; Chang, Lan-Yen ; Li, Lei ; Duncan, Owen ; Millar, A Harvey ; Hanson, Andrew D ; Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><description>Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BCJ20200297</identifier><identifier>PMID: 32441748</identifier><language>eng</language><publisher>England: Biochemical Society</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Catalysis ; cereal grains ; Computational Biology ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Genetic Complementation Test ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ligases - chemistry ; Ligases - genetics ; Ligases - metabolism ; Models, Molecular ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - genetics ; Protein Domains ; proteomics ; thiamin ; Thiamine - biosynthesis ; Thiamine - genetics ; thiazole synthase ; Thiazoles - metabolism</subject><ispartof>Biochemical journal, 2020-06, Vol.477 (11), p.2055-2069</ispartof><rights>2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-6570d1b560b4f47a947870acb3b0076c1726789f2e3a9487ef7c787f5bb597ce3</citedby><cites>FETCH-LOGICAL-c283t-6570d1b560b4f47a947870acb3b0076c1726789f2e3a9487ef7c787f5bb597ce3</cites><orcidid>0000-0001-9679-1473 ; 0000-0003-2585-9340 ; 0000000325859340 ; 0000000196791473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3266,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32441748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1905231$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, Jaya</creatorcontrib><creatorcontrib>Beaudoin, Guillaume A W</creatorcontrib><creatorcontrib>Patterson, Jenelle A</creatorcontrib><creatorcontrib>García-García, Jorge D</creatorcontrib><creatorcontrib>Belisle, Catherine E</creatorcontrib><creatorcontrib>Chang, Lan-Yen</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Duncan, Owen</creatorcontrib><creatorcontrib>Millar, A Harvey</creatorcontrib><creatorcontrib>Hanson, Andrew D</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><title>Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Catalysis</subject><subject>cereal grains</subject><subject>Computational Biology</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Genetic Complementation Test</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ligases - chemistry</subject><subject>Ligases - genetics</subject><subject>Ligases - metabolism</subject><subject>Models, Molecular</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Protein Domains</subject><subject>proteomics</subject><subject>thiamin</subject><subject>Thiamine - biosynthesis</subject><subject>Thiamine - genetics</subject><subject>thiazole synthase</subject><subject>Thiazoles - metabolism</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpN0M9LwzAUwPEgipvTk3cpngSpvvxo0x7d8Mdk6GWeQ5q-YqS_bFJx_70Zm-IpkPfJI3wJOadwQ0Gw2_nimQEDYLk8IFMqJMSZZNkhmQJLRZwCoxNy4twHABUg4JhMOBOCSpFNycvcdratuqHR3ppIt2WE3z0OtsHW6zrCL1tiazAKJHKjNbYMt1tmdJhvto_6Wrc-Wj8thTslR5WuHZ7tzxl5e7hfL57i1evjcnG3ig3LuI_TREJJiySFQlRC6lzITII2BS8AZGqoZKnM8oohD7NMYiVNEFVSFEkuDfIZudzt7Zy3yhnr0bybrm3ReEVzSBinAV3tUD90nyM6rxrrDNbhu9iNTjEBKYcsNAz0ekfN0Dk3YKX6kEAPG0VBbSurf5WDvtgvHosGyz_7m5X_ALL-dWU</recordid><startdate>20200612</startdate><enddate>20200612</enddate><creator>Joshi, Jaya</creator><creator>Beaudoin, Guillaume A W</creator><creator>Patterson, Jenelle A</creator><creator>García-García, Jorge D</creator><creator>Belisle, Catherine E</creator><creator>Chang, Lan-Yen</creator><creator>Li, Lei</creator><creator>Duncan, Owen</creator><creator>Millar, A Harvey</creator><creator>Hanson, Andrew D</creator><general>Biochemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9679-1473</orcidid><orcidid>https://orcid.org/0000-0003-2585-9340</orcidid><orcidid>https://orcid.org/0000000325859340</orcidid><orcidid>https://orcid.org/0000000196791473</orcidid></search><sort><creationdate>20200612</creationdate><title>Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s</title><author>Joshi, Jaya ; Beaudoin, Guillaume A W ; Patterson, Jenelle A ; García-García, Jorge D ; Belisle, Catherine E ; Chang, Lan-Yen ; Li, Lei ; Duncan, Owen ; Millar, A Harvey ; Hanson, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-6570d1b560b4f47a947870acb3b0076c1726789f2e3a9487ef7c787f5bb597ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Catalysis</topic><topic>cereal grains</topic><topic>Computational Biology</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Genetic Complementation Test</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ligases - chemistry</topic><topic>Ligases - genetics</topic><topic>Ligases - metabolism</topic><topic>Models, Molecular</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Protein Domains</topic><topic>proteomics</topic><topic>thiamin</topic><topic>Thiamine - biosynthesis</topic><topic>Thiamine - genetics</topic><topic>thiazole synthase</topic><topic>Thiazoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Jaya</creatorcontrib><creatorcontrib>Beaudoin, Guillaume A W</creatorcontrib><creatorcontrib>Patterson, Jenelle A</creatorcontrib><creatorcontrib>García-García, Jorge D</creatorcontrib><creatorcontrib>Belisle, Catherine E</creatorcontrib><creatorcontrib>Chang, Lan-Yen</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Duncan, Owen</creatorcontrib><creatorcontrib>Millar, A Harvey</creatorcontrib><creatorcontrib>Hanson, Andrew D</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Jaya</au><au>Beaudoin, Guillaume A W</au><au>Patterson, Jenelle A</au><au>García-García, Jorge D</au><au>Belisle, Catherine E</au><au>Chang, Lan-Yen</au><au>Li, Lei</au><au>Duncan, Owen</au><au>Millar, A Harvey</au><au>Hanson, Andrew D</au><aucorp>Univ. of Florida, Gainesville, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2020-06-12</date><risdate>2020</risdate><volume>477</volume><issue>11</issue><spage>2055</spage><epage>2069</epage><pages>2055-2069</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period.</abstract><cop>England</cop><pub>Biochemical Society</pub><pmid>32441748</pmid><doi>10.1042/BCJ20200297</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9679-1473</orcidid><orcidid>https://orcid.org/0000-0003-2585-9340</orcidid><orcidid>https://orcid.org/0000000325859340</orcidid><orcidid>https://orcid.org/0000000196791473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2020-06, Vol.477 (11), p.2055-2069 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_osti_scitechconnect_1905231 |
source | MEDLINE; Portland Press Electronic Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism BASIC BIOLOGICAL SCIENCES Catalysis cereal grains Computational Biology Escherichia coli - enzymology Escherichia coli - genetics Genetic Complementation Test INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ligases - chemistry Ligases - genetics Ligases - metabolism Models, Molecular Plants, Genetically Modified - enzymology Plants, Genetically Modified - genetics Protein Domains proteomics thiamin Thiamine - biosynthesis Thiamine - genetics thiazole synthase Thiazoles - metabolism |
title | Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinformatic%20and%20experimental%20evidence%20for%20suicidal%20and%20catalytic%20plant%20THI4s&rft.jtitle=Biochemical%20journal&rft.au=Joshi,%20Jaya&rft.aucorp=Univ.%20of%20Florida,%20Gainesville,%20FL%20(United%20States)&rft.date=2020-06-12&rft.volume=477&rft.issue=11&rft.spage=2055&rft.epage=2069&rft.pages=2055-2069&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BCJ20200297&rft_dat=%3Cproquest_osti_%3E2406308042%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406308042&rft_id=info:pmid/32441748&rfr_iscdi=true |