Variance-aware weight quantization of multi-level resistive switching devices based on Pt/LaAlO3/SrTiO3 heterostructures
Abstract Resistive switching devices have been regarded as a promising candidate of multi-bit memristors for synaptic applications. The key functionality of the memristors is to realize multiple non-volatile conductance states with high precision. However, the variation of device conductance inevita...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-05, Vol.12 (1) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Resistive switching devices have been regarded as a promising candidate of multi-bit memristors for synaptic applications. The key functionality of the memristors is to realize multiple non-volatile conductance states with high precision. However, the variation of device conductance inevitably causes the state-overlap issue, limiting the number of available states. The insufficient number of states and the resultant inaccurate weight quantization are bottlenecks in developing practical memristors. Herein, we demonstrate a resistive switching device based on Pt/LaAlO3/SrTiO3(Pt/LAO/STO) heterostructures, which is suitable for multi-level memristive applications. By redistributing the surface oxygen vacancies, we precisely control the tunneling of two-dimensional electron gas (2DEG) through the ultrathin LAO barrier, achieving multiple and tunable conductance states (over 27) in a non-volatile way. To further improve the multi-level switching performance, we propose a variance-aware weight quantization (VAQ) method. Our simulation studies verify that the VAQ effectively reduces the state-overlap issue of the resistive switching device. We also find that the VAQ states can better represent the normal-like data distribution and, thus, significantly improve the computing accuracy of the device. Our results provide valuable insight into developing high-precision multi-bit memristors based on complex oxide heterostructures for neuromorphic applications. |
---|---|
ISSN: | 2045-2322 2045-2322 |