Enabling Extreme Fast-Charging: Challenges at the Cathode and Mitigation Strategies
We report charging lithium-ion batteries (LiBs) in 10 to 15 min via extreme fast-charging (XFC) is important for the widespread adoption of electric vehicles (EVs). Lately, the battery research community has focused on identifying XFC bottlenecks and determining novel design solutions. Like other Li...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-11, Vol.12 (46) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 46 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Tanim, Tanvir R. Weddle, Peter J. Yang, Zhenzhen Colclasure, Andrew M. Charalambous, Harry Finegan, Donal P. Lu, Yanying Preefer, Molleigh Kim, Sangwook Allen, Jeffery M. Usseglio‐Viretta, Francois E. Chinnam, Parameswara R. Bloom, Ira Dufek, Eric J. Smith, Kandler Chen, Guoying Wiaderek, Kamila M. Weker, Johanna Nelson Ren, Yang |
description | We report charging lithium-ion batteries (LiBs) in 10 to 15 min via extreme fast-charging (XFC) is important for the widespread adoption of electric vehicles (EVs). Lately, the battery research community has focused on identifying XFC bottlenecks and determining novel design solutions. Like other LiB components, cathodes can present XFC bottlenecks, especially when considering long-term battery life. Therefore, it is necessary to develop a comprehensive understanding of how XFC conditions degrade LiB cathodes. The present article reviews relevant cathode-focused studies and summarizes the current understanding regarding cathode performance and aging issues under XFC conditions. Dominant aging modes and mechanisms are identified at different length-scales with electrochemical correlations for LiNixMnyCozO2 (NMC)-based cathodes. A range of electrochemical techniques and models provide key insights into cathode performance and life issues. A suite of multimodal and multiscale microscopy and X-ray techniques is surveyed to quantify chemical, structural, and crystallographic NMC-cathode degradation. Cathode cycle-life is scaled to equivalent EV miles to illustrate how cathode degradation translates to real-world scenarios and quantifies cathode-related bottlenecks that hinder XFC adoption. Finally, the article discusses several cathode cycle-life aging mitigation strategies with example case studies and identifies remaining challenges. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1903760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903760</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19037603</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMoWLT_8HAvpKZU61paXJzqLs_0mURiAs0b_Hw7iLNnuYfLWYisrMuqqI-VXP5c7dciT-kpZ6qmlEplYugC3r0LBro3T_Qi6DFx0VqczPyeYDbvKRhKgAxsCVpkG0cCDCNcHDuD7GKAgSdkMo7SVqwe6BPl392IXd9d23MRE7tb0o5JWx1DIM23spHqUEv1V_QB5nVBTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enabling Extreme Fast-Charging: Challenges at the Cathode and Mitigation Strategies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tanim, Tanvir R. ; Weddle, Peter J. ; Yang, Zhenzhen ; Colclasure, Andrew M. ; Charalambous, Harry ; Finegan, Donal P. ; Lu, Yanying ; Preefer, Molleigh ; Kim, Sangwook ; Allen, Jeffery M. ; Usseglio‐Viretta, Francois E. ; Chinnam, Parameswara R. ; Bloom, Ira ; Dufek, Eric J. ; Smith, Kandler ; Chen, Guoying ; Wiaderek, Kamila M. ; Weker, Johanna Nelson ; Ren, Yang</creator><creatorcontrib>Tanim, Tanvir R. ; Weddle, Peter J. ; Yang, Zhenzhen ; Colclasure, Andrew M. ; Charalambous, Harry ; Finegan, Donal P. ; Lu, Yanying ; Preefer, Molleigh ; Kim, Sangwook ; Allen, Jeffery M. ; Usseglio‐Viretta, Francois E. ; Chinnam, Parameswara R. ; Bloom, Ira ; Dufek, Eric J. ; Smith, Kandler ; Chen, Guoying ; Wiaderek, Kamila M. ; Weker, Johanna Nelson ; Ren, Yang ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>We report charging lithium-ion batteries (LiBs) in 10 to 15 min via extreme fast-charging (XFC) is important for the widespread adoption of electric vehicles (EVs). Lately, the battery research community has focused on identifying XFC bottlenecks and determining novel design solutions. Like other LiB components, cathodes can present XFC bottlenecks, especially when considering long-term battery life. Therefore, it is necessary to develop a comprehensive understanding of how XFC conditions degrade LiB cathodes. The present article reviews relevant cathode-focused studies and summarizes the current understanding regarding cathode performance and aging issues under XFC conditions. Dominant aging modes and mechanisms are identified at different length-scales with electrochemical correlations for LiNixMnyCozO2 (NMC)-based cathodes. A range of electrochemical techniques and models provide key insights into cathode performance and life issues. A suite of multimodal and multiscale microscopy and X-ray techniques is surveyed to quantify chemical, structural, and crystallographic NMC-cathode degradation. Cathode cycle-life is scaled to equivalent EV miles to illustrate how cathode degradation translates to real-world scenarios and quantifies cathode-related bottlenecks that hinder XFC adoption. Finally, the article discusses several cathode cycle-life aging mitigation strategies with example case studies and identifies remaining challenges.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>ADVANCED PROPULSION SYSTEMS ; Cathode degradation ; Cracking ; ENERGY STORAGE ; Fast charge ; Li-ion battery ; NMC ; Reconstruction ; Rock-salt</subject><ispartof>Advanced energy materials, 2022-11, Vol.12 (46)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>000000034633560X ; 0000000218646868 ; 0000000295745106 ; 0000000348021997 ; 0000000170110377 ; 0000000216000756 ; 0000000275598874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1903760$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanim, Tanvir R.</creatorcontrib><creatorcontrib>Weddle, Peter J.</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Colclasure, Andrew M.</creatorcontrib><creatorcontrib>Charalambous, Harry</creatorcontrib><creatorcontrib>Finegan, Donal P.</creatorcontrib><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Preefer, Molleigh</creatorcontrib><creatorcontrib>Kim, Sangwook</creatorcontrib><creatorcontrib>Allen, Jeffery M.</creatorcontrib><creatorcontrib>Usseglio‐Viretta, Francois E.</creatorcontrib><creatorcontrib>Chinnam, Parameswara R.</creatorcontrib><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Dufek, Eric J.</creatorcontrib><creatorcontrib>Smith, Kandler</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Weker, Johanna Nelson</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Enabling Extreme Fast-Charging: Challenges at the Cathode and Mitigation Strategies</title><title>Advanced energy materials</title><description>We report charging lithium-ion batteries (LiBs) in 10 to 15 min via extreme fast-charging (XFC) is important for the widespread adoption of electric vehicles (EVs). Lately, the battery research community has focused on identifying XFC bottlenecks and determining novel design solutions. Like other LiB components, cathodes can present XFC bottlenecks, especially when considering long-term battery life. Therefore, it is necessary to develop a comprehensive understanding of how XFC conditions degrade LiB cathodes. The present article reviews relevant cathode-focused studies and summarizes the current understanding regarding cathode performance and aging issues under XFC conditions. Dominant aging modes and mechanisms are identified at different length-scales with electrochemical correlations for LiNixMnyCozO2 (NMC)-based cathodes. A range of electrochemical techniques and models provide key insights into cathode performance and life issues. A suite of multimodal and multiscale microscopy and X-ray techniques is surveyed to quantify chemical, structural, and crystallographic NMC-cathode degradation. Cathode cycle-life is scaled to equivalent EV miles to illustrate how cathode degradation translates to real-world scenarios and quantifies cathode-related bottlenecks that hinder XFC adoption. Finally, the article discusses several cathode cycle-life aging mitigation strategies with example case studies and identifies remaining challenges.</description><subject>ADVANCED PROPULSION SYSTEMS</subject><subject>Cathode degradation</subject><subject>Cracking</subject><subject>ENERGY STORAGE</subject><subject>Fast charge</subject><subject>Li-ion battery</subject><subject>NMC</subject><subject>Reconstruction</subject><subject>Rock-salt</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNirEKwjAURYMoWLT_8HAvpKZU61paXJzqLs_0mURiAs0b_Hw7iLNnuYfLWYisrMuqqI-VXP5c7dciT-kpZ6qmlEplYugC3r0LBro3T_Qi6DFx0VqczPyeYDbvKRhKgAxsCVpkG0cCDCNcHDuD7GKAgSdkMo7SVqwe6BPl392IXd9d23MRE7tb0o5JWx1DIM23spHqUEv1V_QB5nVBTQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tanim, Tanvir R.</creator><creator>Weddle, Peter J.</creator><creator>Yang, Zhenzhen</creator><creator>Colclasure, Andrew M.</creator><creator>Charalambous, Harry</creator><creator>Finegan, Donal P.</creator><creator>Lu, Yanying</creator><creator>Preefer, Molleigh</creator><creator>Kim, Sangwook</creator><creator>Allen, Jeffery M.</creator><creator>Usseglio‐Viretta, Francois E.</creator><creator>Chinnam, Parameswara R.</creator><creator>Bloom, Ira</creator><creator>Dufek, Eric J.</creator><creator>Smith, Kandler</creator><creator>Chen, Guoying</creator><creator>Wiaderek, Kamila M.</creator><creator>Weker, Johanna Nelson</creator><creator>Ren, Yang</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/000000034633560X</orcidid><orcidid>https://orcid.org/0000000218646868</orcidid><orcidid>https://orcid.org/0000000295745106</orcidid><orcidid>https://orcid.org/0000000348021997</orcidid><orcidid>https://orcid.org/0000000170110377</orcidid><orcidid>https://orcid.org/0000000216000756</orcidid><orcidid>https://orcid.org/0000000275598874</orcidid></search><sort><creationdate>20221101</creationdate><title>Enabling Extreme Fast-Charging: Challenges at the Cathode and Mitigation Strategies</title><author>Tanim, Tanvir R. ; Weddle, Peter J. ; Yang, Zhenzhen ; Colclasure, Andrew M. ; Charalambous, Harry ; Finegan, Donal P. ; Lu, Yanying ; Preefer, Molleigh ; Kim, Sangwook ; Allen, Jeffery M. ; Usseglio‐Viretta, Francois E. ; Chinnam, Parameswara R. ; Bloom, Ira ; Dufek, Eric J. ; Smith, Kandler ; Chen, Guoying ; Wiaderek, Kamila M. ; Weker, Johanna Nelson ; Ren, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19037603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ADVANCED PROPULSION SYSTEMS</topic><topic>Cathode degradation</topic><topic>Cracking</topic><topic>ENERGY STORAGE</topic><topic>Fast charge</topic><topic>Li-ion battery</topic><topic>NMC</topic><topic>Reconstruction</topic><topic>Rock-salt</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanim, Tanvir R.</creatorcontrib><creatorcontrib>Weddle, Peter J.</creatorcontrib><creatorcontrib>Yang, Zhenzhen</creatorcontrib><creatorcontrib>Colclasure, Andrew M.</creatorcontrib><creatorcontrib>Charalambous, Harry</creatorcontrib><creatorcontrib>Finegan, Donal P.</creatorcontrib><creatorcontrib>Lu, Yanying</creatorcontrib><creatorcontrib>Preefer, Molleigh</creatorcontrib><creatorcontrib>Kim, Sangwook</creatorcontrib><creatorcontrib>Allen, Jeffery M.</creatorcontrib><creatorcontrib>Usseglio‐Viretta, Francois E.</creatorcontrib><creatorcontrib>Chinnam, Parameswara R.</creatorcontrib><creatorcontrib>Bloom, Ira</creatorcontrib><creatorcontrib>Dufek, Eric J.</creatorcontrib><creatorcontrib>Smith, Kandler</creatorcontrib><creatorcontrib>Chen, Guoying</creatorcontrib><creatorcontrib>Wiaderek, Kamila M.</creatorcontrib><creatorcontrib>Weker, Johanna Nelson</creatorcontrib><creatorcontrib>Ren, Yang</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanim, Tanvir R.</au><au>Weddle, Peter J.</au><au>Yang, Zhenzhen</au><au>Colclasure, Andrew M.</au><au>Charalambous, Harry</au><au>Finegan, Donal P.</au><au>Lu, Yanying</au><au>Preefer, Molleigh</au><au>Kim, Sangwook</au><au>Allen, Jeffery M.</au><au>Usseglio‐Viretta, Francois E.</au><au>Chinnam, Parameswara R.</au><au>Bloom, Ira</au><au>Dufek, Eric J.</au><au>Smith, Kandler</au><au>Chen, Guoying</au><au>Wiaderek, Kamila M.</au><au>Weker, Johanna Nelson</au><au>Ren, Yang</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Extreme Fast-Charging: Challenges at the Cathode and Mitigation Strategies</atitle><jtitle>Advanced energy materials</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>46</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>We report charging lithium-ion batteries (LiBs) in 10 to 15 min via extreme fast-charging (XFC) is important for the widespread adoption of electric vehicles (EVs). Lately, the battery research community has focused on identifying XFC bottlenecks and determining novel design solutions. Like other LiB components, cathodes can present XFC bottlenecks, especially when considering long-term battery life. Therefore, it is necessary to develop a comprehensive understanding of how XFC conditions degrade LiB cathodes. The present article reviews relevant cathode-focused studies and summarizes the current understanding regarding cathode performance and aging issues under XFC conditions. Dominant aging modes and mechanisms are identified at different length-scales with electrochemical correlations for LiNixMnyCozO2 (NMC)-based cathodes. A range of electrochemical techniques and models provide key insights into cathode performance and life issues. A suite of multimodal and multiscale microscopy and X-ray techniques is surveyed to quantify chemical, structural, and crystallographic NMC-cathode degradation. Cathode cycle-life is scaled to equivalent EV miles to illustrate how cathode degradation translates to real-world scenarios and quantifies cathode-related bottlenecks that hinder XFC adoption. Finally, the article discusses several cathode cycle-life aging mitigation strategies with example case studies and identifies remaining challenges.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/000000034633560X</orcidid><orcidid>https://orcid.org/0000000218646868</orcidid><orcidid>https://orcid.org/0000000295745106</orcidid><orcidid>https://orcid.org/0000000348021997</orcidid><orcidid>https://orcid.org/0000000170110377</orcidid><orcidid>https://orcid.org/0000000216000756</orcidid><orcidid>https://orcid.org/0000000275598874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-11, Vol.12 (46) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1903760 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ADVANCED PROPULSION SYSTEMS Cathode degradation Cracking ENERGY STORAGE Fast charge Li-ion battery NMC Reconstruction Rock-salt |
title | Enabling Extreme Fast-Charging: Challenges at the Cathode and Mitigation Strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Extreme%20Fast-Charging:%20Challenges%20at%20the%20Cathode%20and%20Mitigation%20Strategies&rft.jtitle=Advanced%20energy%20materials&rft.au=Tanim,%20Tanvir%20R.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-11-01&rft.volume=12&rft.issue=46&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/&rft_dat=%3Costi%3E1903760%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |