CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps

Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-03, Vol.34 (5), p.2107-2122
Hauptverfasser: Ha, Viet-Anh, Lee, Hyungjun, Giustino, Feliciano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2122
container_issue 5
container_start_page 2107
container_title Chemistry of materials
container_volume 34
creator Ha, Viet-Anh
Lee, Hyungjun
Giustino, Feliciano
description Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.
doi_str_mv 10.1021/acs.chemmater.1c03503
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1903348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c076434381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a201t-371fcf1c2f95b3e501d3d17739a13dc35e7f6abf857641d77bb9279b49198ed3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QQi-d-b2Nkvjmxadwuj2MHwNaZLSzK0ZTZx_3w6HTxcu5xw-PkLugc2A5fCoTZyZzu33OrlhBoYhZ3hBJsBzlnHG8ksyYaUUWSH4_JrcxLhlDMZqOSGfldvoGqnuLa1c3dT4RNdDiAdnkj86Wvs0eOvo2g3hGL98cpH--NTR1SH5vd7RdRdSOIZd0t7Ql9PMQh_iLblq9S66u_Odks3b66Z6z5arxUf1vMx0ziBlKKA1LZi8lbxBxxlYtCAESg1oDXIn2rlu2pKLeQFWiKaRuZBNIUGWzuKUPPzNhpi8imbEM50JfT_SK5AMsSjHEPyFRk9qG76HfiRSwNRJnjo9_-Wpszz8BRgvZcM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</title><source>American Chemical Society Journals</source><creator>Ha, Viet-Anh ; Lee, Hyungjun ; Giustino, Feliciano</creator><creatorcontrib>Ha, Viet-Anh ; Lee, Hyungjun ; Giustino, Feliciano ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c03503</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy ; Materials ; MATERIALS SCIENCE ; Nitrides ; Perovskites ; Stability</subject><ispartof>Chemistry of materials, 2022-03, Vol.34 (5), p.2107-2122</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5629-682X ; 0000-0002-6665-1274 ; 000000025629682X ; 0000000266651274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c03503$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c03503$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1903348$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Viet-Anh</creatorcontrib><creatorcontrib>Lee, Hyungjun</creatorcontrib><creatorcontrib>Giustino, Feliciano</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.</description><subject>Energy</subject><subject>Materials</subject><subject>MATERIALS SCIENCE</subject><subject>Nitrides</subject><subject>Perovskites</subject><subject>Stability</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKc_QQi-d-b2Nkvjmxadwuj2MHwNaZLSzK0ZTZx_3w6HTxcu5xw-PkLugc2A5fCoTZyZzu33OrlhBoYhZ3hBJsBzlnHG8ksyYaUUWSH4_JrcxLhlDMZqOSGfldvoGqnuLa1c3dT4RNdDiAdnkj86Wvs0eOvo2g3hGL98cpH--NTR1SH5vd7RdRdSOIZd0t7Ql9PMQh_iLblq9S66u_Odks3b66Z6z5arxUf1vMx0ziBlKKA1LZi8lbxBxxlYtCAESg1oDXIn2rlu2pKLeQFWiKaRuZBNIUGWzuKUPPzNhpi8imbEM50JfT_SK5AMsSjHEPyFRk9qG76HfiRSwNRJnjo9_-Wpszz8BRgvZcM</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Ha, Viet-Anh</creator><creator>Lee, Hyungjun</creator><creator>Giustino, Feliciano</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5629-682X</orcidid><orcidid>https://orcid.org/0000-0002-6665-1274</orcidid><orcidid>https://orcid.org/000000025629682X</orcidid><orcidid>https://orcid.org/0000000266651274</orcidid></search><sort><creationdate>20220308</creationdate><title>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</title><author>Ha, Viet-Anh ; Lee, Hyungjun ; Giustino, Feliciano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a201t-371fcf1c2f95b3e501d3d17739a13dc35e7f6abf857641d77bb9279b49198ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy</topic><topic>Materials</topic><topic>MATERIALS SCIENCE</topic><topic>Nitrides</topic><topic>Perovskites</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Viet-Anh</creatorcontrib><creatorcontrib>Lee, Hyungjun</creatorcontrib><creatorcontrib>Giustino, Feliciano</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Viet-Anh</au><au>Lee, Hyungjun</au><au>Giustino, Feliciano</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>2107</spage><epage>2122</epage><pages>2107-2122</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c03503</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5629-682X</orcidid><orcidid>https://orcid.org/0000-0002-6665-1274</orcidid><orcidid>https://orcid.org/000000025629682X</orcidid><orcidid>https://orcid.org/0000000266651274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2022-03, Vol.34 (5), p.2107-2122
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1903348
source American Chemical Society Journals
subjects Energy
Materials
MATERIALS SCIENCE
Nitrides
Perovskites
Stability
title CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CeTaN3%20and%20CeNbN3:%20Prospective%20Nitride%20Perovskites%20with%20Optimal%20Photovoltaic%20Band%20Gaps&rft.jtitle=Chemistry%20of%20materials&rft.au=Ha,%20Viet-Anh&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2022-03-08&rft.volume=34&rft.issue=5&rft.spage=2107&rft.epage=2122&rft.pages=2107-2122&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c03503&rft_dat=%3Cacs_osti_%3Ec076434381%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true