CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps
Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride per...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2022-03, Vol.34 (5), p.2107-2122 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2122 |
---|---|
container_issue | 5 |
container_start_page | 2107 |
container_title | Chemistry of materials |
container_volume | 34 |
creator | Ha, Viet-Anh Lee, Hyungjun Giustino, Feliciano |
description | Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology. |
doi_str_mv | 10.1021/acs.chemmater.1c03503 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1903348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c076434381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a201t-371fcf1c2f95b3e501d3d17739a13dc35e7f6abf857641d77bb9279b49198ed3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QQi-d-b2Nkvjmxadwuj2MHwNaZLSzK0ZTZx_3w6HTxcu5xw-PkLugc2A5fCoTZyZzu33OrlhBoYhZ3hBJsBzlnHG8ksyYaUUWSH4_JrcxLhlDMZqOSGfldvoGqnuLa1c3dT4RNdDiAdnkj86Wvs0eOvo2g3hGL98cpH--NTR1SH5vd7RdRdSOIZd0t7Ql9PMQh_iLblq9S66u_Odks3b66Z6z5arxUf1vMx0ziBlKKA1LZi8lbxBxxlYtCAESg1oDXIn2rlu2pKLeQFWiKaRuZBNIUGWzuKUPPzNhpi8imbEM50JfT_SK5AMsSjHEPyFRk9qG76HfiRSwNRJnjo9_-Wpszz8BRgvZcM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</title><source>American Chemical Society Journals</source><creator>Ha, Viet-Anh ; Lee, Hyungjun ; Giustino, Feliciano</creator><creatorcontrib>Ha, Viet-Anh ; Lee, Hyungjun ; Giustino, Feliciano ; Univ. of Texas, Austin, TX (United States)</creatorcontrib><description>Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c03503</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy ; Materials ; MATERIALS SCIENCE ; Nitrides ; Perovskites ; Stability</subject><ispartof>Chemistry of materials, 2022-03, Vol.34 (5), p.2107-2122</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5629-682X ; 0000-0002-6665-1274 ; 000000025629682X ; 0000000266651274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c03503$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c03503$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1903348$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Viet-Anh</creatorcontrib><creatorcontrib>Lee, Hyungjun</creatorcontrib><creatorcontrib>Giustino, Feliciano</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><title>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.</description><subject>Energy</subject><subject>Materials</subject><subject>MATERIALS SCIENCE</subject><subject>Nitrides</subject><subject>Perovskites</subject><subject>Stability</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKc_QQi-d-b2Nkvjmxadwuj2MHwNaZLSzK0ZTZx_3w6HTxcu5xw-PkLugc2A5fCoTZyZzu33OrlhBoYhZ3hBJsBzlnHG8ksyYaUUWSH4_JrcxLhlDMZqOSGfldvoGqnuLa1c3dT4RNdDiAdnkj86Wvs0eOvo2g3hGL98cpH--NTR1SH5vd7RdRdSOIZd0t7Ql9PMQh_iLblq9S66u_Odks3b66Z6z5arxUf1vMx0ziBlKKA1LZi8lbxBxxlYtCAESg1oDXIn2rlu2pKLeQFWiKaRuZBNIUGWzuKUPPzNhpi8imbEM50JfT_SK5AMsSjHEPyFRk9qG76HfiRSwNRJnjo9_-Wpszz8BRgvZcM</recordid><startdate>20220308</startdate><enddate>20220308</enddate><creator>Ha, Viet-Anh</creator><creator>Lee, Hyungjun</creator><creator>Giustino, Feliciano</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5629-682X</orcidid><orcidid>https://orcid.org/0000-0002-6665-1274</orcidid><orcidid>https://orcid.org/000000025629682X</orcidid><orcidid>https://orcid.org/0000000266651274</orcidid></search><sort><creationdate>20220308</creationdate><title>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</title><author>Ha, Viet-Anh ; Lee, Hyungjun ; Giustino, Feliciano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a201t-371fcf1c2f95b3e501d3d17739a13dc35e7f6abf857641d77bb9279b49198ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy</topic><topic>Materials</topic><topic>MATERIALS SCIENCE</topic><topic>Nitrides</topic><topic>Perovskites</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Viet-Anh</creatorcontrib><creatorcontrib>Lee, Hyungjun</creatorcontrib><creatorcontrib>Giustino, Feliciano</creatorcontrib><creatorcontrib>Univ. of Texas, Austin, TX (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Viet-Anh</au><au>Lee, Hyungjun</au><au>Giustino, Feliciano</au><aucorp>Univ. of Texas, Austin, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-03-08</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>2107</spage><epage>2122</epage><pages>2107-2122</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Perovskites constitute an exceptionally tunable materials family with diverse applications in electronics, optoelectronics, energy, and quantum technologies. Out of the thousands of known perovskites, the majority of compounds are oxides, halides, and chalcogenides. In contrast, only two nitride perovskites are currently known. In this work we perform a thorough ab initio computational screening of possible nitride perovskites, and we identify two new compounds, CeNbN3 and CeTaN3, with band gaps in the near-infrared to visible range, depending on temperature. In their room-temperature orthorhombic phase, we predict that both compounds exhibit direct or quasidirect band gaps in the range 1.1–2.0 eV, with the Pnma phases matching the Shockley–Queisser limit for photovoltaic energy conversion efficiency. These compounds are also predicted to be strong light absorbers, with absorption coefficients surpassing those of high-performance semiconductors such as GaAs and CH3NH3PbI3. The present findings reveal a potentially new class of nitride semiconductors with promise for electronics, optoelectronics, and light harvesting and for integration with existing nitride-based lighting technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c03503</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5629-682X</orcidid><orcidid>https://orcid.org/0000-0002-6665-1274</orcidid><orcidid>https://orcid.org/000000025629682X</orcidid><orcidid>https://orcid.org/0000000266651274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2022-03, Vol.34 (5), p.2107-2122 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1903348 |
source | American Chemical Society Journals |
subjects | Energy Materials MATERIALS SCIENCE Nitrides Perovskites Stability |
title | CeTaN3 and CeNbN3: Prospective Nitride Perovskites with Optimal Photovoltaic Band Gaps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CeTaN3%20and%20CeNbN3:%20Prospective%20Nitride%20Perovskites%20with%20Optimal%20Photovoltaic%20Band%20Gaps&rft.jtitle=Chemistry%20of%20materials&rft.au=Ha,%20Viet-Anh&rft.aucorp=Univ.%20of%20Texas,%20Austin,%20TX%20(United%20States)&rft.date=2022-03-08&rft.volume=34&rft.issue=5&rft.spage=2107&rft.epage=2122&rft.pages=2107-2122&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c03503&rft_dat=%3Cacs_osti_%3Ec076434381%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |