Molecular-based analysis of nanoparticle solvation: Classical density functional approach

Proper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-11, Vol.157 (18)
Hauptverfasser: Chuev, Gennady N., Dinpajooh, Mohammadhasan, Valiev, Marat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title The Journal of chemical physics
container_volume 157
creator Chuev, Gennady N.
Dinpajooh, Mohammadhasan
Valiev, Marat
description Proper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach to this problem can be formulated using classical density functional theory (cDFT), where a full configurational description of the positions of all the atoms is replaced by collective atomic site densities in the molecule. Using an example of the negatively charged silica-like system in an aqueous polar environment represented by a two-site water model, we demonstrate that cDFT can reproduce MD data at a fraction of the computational cost. An important implication of this result is the ability to understand how the solvent molecular features may affect the system’s properties at the macroscopic scale. A concrete example highlighted in this work is the analysis of nanoparticle interactions with sizes of up to 100 nm in diameter.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1902946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902946</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_19029463</originalsourceid><addsrcrecordid>eNqNissKwjAQAIMoWB__ELwXtrWkxmtRvHjz4qms25RGQlK6qdC_V8EP8DQwMzORZHDQaak0zEUCkGepVqCWYsX8BICszItE3K_BGRodDukD2TQSPbqJLcvQSo8-9DhES85IDu6F0QZ_lJVDZkvoZGM82zjJdvT0bR-FfT8EpG4jFi06Ntsf12J3Pt2qSxo42prJRkMdBe8NxTrTkOtC7f-a3gI1RKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular-based analysis of nanoparticle solvation: Classical density functional approach</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chuev, Gennady N. ; Dinpajooh, Mohammadhasan ; Valiev, Marat</creator><creatorcontrib>Chuev, Gennady N. ; Dinpajooh, Mohammadhasan ; Valiev, Marat ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Proper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach to this problem can be formulated using classical density functional theory (cDFT), where a full configurational description of the positions of all the atoms is replaced by collective atomic site densities in the molecule. Using an example of the negatively charged silica-like system in an aqueous polar environment represented by a two-site water model, we demonstrate that cDFT can reproduce MD data at a fraction of the computational cost. An important implication of this result is the ability to understand how the solvent molecular features may affect the system’s properties at the macroscopic scale. A concrete example highlighted in this work is the analysis of nanoparticle interactions with sizes of up to 100 nm in diameter.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>Atomistic simulations ; Classical statistical mechanics ; Density functional theory ; Functional analysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermolecular forces ; Liquid structure simulation ; Molecular dynamics ; Molecular liquids ; Nanoparticles ; Water model</subject><ispartof>The Journal of chemical physics, 2022-11, Vol.157 (18)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000161271988 ; 0000000215470334 ; 0000000286083753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1902946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chuev, Gennady N.</creatorcontrib><creatorcontrib>Dinpajooh, Mohammadhasan</creatorcontrib><creatorcontrib>Valiev, Marat</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Molecular-based analysis of nanoparticle solvation: Classical density functional approach</title><title>The Journal of chemical physics</title><description>Proper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach to this problem can be formulated using classical density functional theory (cDFT), where a full configurational description of the positions of all the atoms is replaced by collective atomic site densities in the molecule. Using an example of the negatively charged silica-like system in an aqueous polar environment represented by a two-site water model, we demonstrate that cDFT can reproduce MD data at a fraction of the computational cost. An important implication of this result is the ability to understand how the solvent molecular features may affect the system’s properties at the macroscopic scale. A concrete example highlighted in this work is the analysis of nanoparticle interactions with sizes of up to 100 nm in diameter.</description><subject>Atomistic simulations</subject><subject>Classical statistical mechanics</subject><subject>Density functional theory</subject><subject>Functional analysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermolecular forces</subject><subject>Liquid structure simulation</subject><subject>Molecular dynamics</subject><subject>Molecular liquids</subject><subject>Nanoparticles</subject><subject>Water model</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNissKwjAQAIMoWB__ELwXtrWkxmtRvHjz4qms25RGQlK6qdC_V8EP8DQwMzORZHDQaak0zEUCkGepVqCWYsX8BICszItE3K_BGRodDukD2TQSPbqJLcvQSo8-9DhES85IDu6F0QZ_lJVDZkvoZGM82zjJdvT0bR-FfT8EpG4jFi06Ntsf12J3Pt2qSxo42prJRkMdBe8NxTrTkOtC7f-a3gI1RKA</recordid><startdate>20221111</startdate><enddate>20221111</enddate><creator>Chuev, Gennady N.</creator><creator>Dinpajooh, Mohammadhasan</creator><creator>Valiev, Marat</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000161271988</orcidid><orcidid>https://orcid.org/0000000215470334</orcidid><orcidid>https://orcid.org/0000000286083753</orcidid></search><sort><creationdate>20221111</creationdate><title>Molecular-based analysis of nanoparticle solvation: Classical density functional approach</title><author>Chuev, Gennady N. ; Dinpajooh, Mohammadhasan ; Valiev, Marat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_19029463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomistic simulations</topic><topic>Classical statistical mechanics</topic><topic>Density functional theory</topic><topic>Functional analysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermolecular forces</topic><topic>Liquid structure simulation</topic><topic>Molecular dynamics</topic><topic>Molecular liquids</topic><topic>Nanoparticles</topic><topic>Water model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuev, Gennady N.</creatorcontrib><creatorcontrib>Dinpajooh, Mohammadhasan</creatorcontrib><creatorcontrib>Valiev, Marat</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuev, Gennady N.</au><au>Dinpajooh, Mohammadhasan</au><au>Valiev, Marat</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-based analysis of nanoparticle solvation: Classical density functional approach</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-11-11</date><risdate>2022</risdate><volume>157</volume><issue>18</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Proper statistical mechanics understanding of nanoparticle solvation processes requires an accurate description of the molecular structure of the solvent. Achieving this goal with standard molecular dynamics (MD) simulation methods is challenging due to large length scales. An alternative approach to this problem can be formulated using classical density functional theory (cDFT), where a full configurational description of the positions of all the atoms is replaced by collective atomic site densities in the molecule. Using an example of the negatively charged silica-like system in an aqueous polar environment represented by a two-site water model, we demonstrate that cDFT can reproduce MD data at a fraction of the computational cost. An important implication of this result is the ability to understand how the solvent molecular features may affect the system’s properties at the macroscopic scale. A concrete example highlighted in this work is the analysis of nanoparticle interactions with sizes of up to 100 nm in diameter.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000161271988</orcidid><orcidid>https://orcid.org/0000000215470334</orcidid><orcidid>https://orcid.org/0000000286083753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-11, Vol.157 (18)
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1902946
source AIP Journals Complete; Alma/SFX Local Collection
subjects Atomistic simulations
Classical statistical mechanics
Density functional theory
Functional analysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermolecular forces
Liquid structure simulation
Molecular dynamics
Molecular liquids
Nanoparticles
Water model
title Molecular-based analysis of nanoparticle solvation: Classical density functional approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-based%20analysis%20of%20nanoparticle%20solvation:%20Classical%20density%20functional%20approach&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Chuev,%20Gennady%20N.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States).%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2022-11-11&rft.volume=157&rft.issue=18&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/&rft_dat=%3Costi%3E1902946%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true