Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons

Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-12, Vol.600 (7890), p.647-652
Hauptverfasser: Blackwell, Raymond E., Zhao, Fangzhou, Brooks, Erin, Zhu, Junmian, Piskun, Ilya, Wang, Shenkai, Delgado, Aidan, Lee, Yea-Lee, Louie, Steven G., Fischer, Felix R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 7890
container_start_page 647
container_title Nature (London)
container_volume 600
creator Blackwell, Raymond E.
Zhao, Fangzhou
Brooks, Erin
Zhu, Junmian
Piskun, Ilya
Wang, Shenkai
Delgado, Aidan
Lee, Yea-Lee
Louie, Steven G.
Fischer, Felix R.
description Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.
doi_str_mv 10.1038/s41586-021-04201-y
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1900420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687699786</galeid><sourcerecordid>A687699786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgei28Ac4oKhcQCjFjvNhH1crPioqkOhKHC2vM05dJXZqOxLbX18vKdBFC8ohUvzMWDN5EXpB8BnBlL0LJalYneOC5LgsMMm3j9CClE2dlzVrHqMFxgXLMaP1EToO4RpjXJGmfIqOaMlpwzhfoM-Xo7FZGHsTo7Fd5nTWulHamEHbQRaijJAlMcjOQjQquzXdreyyzsvxCixkVlrnzWbjbHiGnmjZB3h-_z5B6w_v16tP-cXXj-er5UWu6gbHvNK4lFg1VBcNq7WmlKtW87aqJAdSSE4Ia6uatFpWtKW0bJgklGANGhqG6Qk6ndu6EI0IykRQV8pZCyoKwvFuFwm9ntHo3c0EIYrBBAV9Ly24KYiiJrRIN_Eq0Vd_0Ws3eZsm2Km6KBpePlCd7EEYq130Uu2aimXads15Giap_IDq0qK87J0FbdLnPX96wKvR3IiH6OwASk8Lg1EHu77ZK0gmwo_YySkEcX75bd--_bddrr-vvuzrYtbKuxA8aDF6M0i_FQSLXSjFHEqRQil-hlJsU9HL-wVPmwHa3yW_UpgAnUFIR7YD_-cP_KftHTBX50U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616227945</pqid></control><display><type>article</type><title>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Blackwell, Raymond E. ; Zhao, Fangzhou ; Brooks, Erin ; Zhu, Junmian ; Piskun, Ilya ; Wang, Shenkai ; Delgado, Aidan ; Lee, Yea-Lee ; Louie, Steven G. ; Fischer, Felix R.</creator><creatorcontrib>Blackwell, Raymond E. ; Zhao, Fangzhou ; Brooks, Erin ; Zhu, Junmian ; Piskun, Ilya ; Wang, Shenkai ; Delgado, Aidan ; Lee, Yea-Lee ; Louie, Steven G. ; Fischer, Felix R. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04201-y</identifier><identifier>PMID: 34937899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 142/136 ; 639/638/298/920 ; 639/638/542/968 ; 639/766/119/997 ; 639/925/918/1052 ; Adsorption ; Analysis ; Antiferromagnetism ; Carbon ; Chemical properties ; Dopants ; Electron spin ; Electron states ; electronic properties and devices ; Ferromagnetism ; First principles ; Functional integration ; Geometry ; Graphene ; Humanities and Social Sciences ; Hybridization ; Hydrogen ; magnetic materials ; Magnetic properties ; magnetic properties and materials ; MATERIALS SCIENCE ; Microscopy ; multidisciplinary ; Nanoribbons ; Nanotechnology ; Nitrogen ; Particle spin ; scanning probe microscopy ; Science ; Science (multidisciplinary) ; Spectroscopy ; Spectrum analysis ; Splitting ; Structure ; Superlattices ; Topography</subject><ispartof>Nature (London), 2021-12, Vol.600 (7890), p.647-652</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 23-Dec 30, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</citedby><cites>FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</cites><orcidid>0000-0003-0622-0170 ; 0000-0002-5834-0679 ; 0000-0003-4723-3111 ; 0000000306220170 ; 0000000347233111 ; 0000000258340679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04201-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04201-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34937899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1900420$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackwell, Raymond E.</creatorcontrib><creatorcontrib>Zhao, Fangzhou</creatorcontrib><creatorcontrib>Brooks, Erin</creatorcontrib><creatorcontrib>Zhu, Junmian</creatorcontrib><creatorcontrib>Piskun, Ilya</creatorcontrib><creatorcontrib>Wang, Shenkai</creatorcontrib><creatorcontrib>Delgado, Aidan</creatorcontrib><creatorcontrib>Lee, Yea-Lee</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Fischer, Felix R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.</description><subject>119/118</subject><subject>142/136</subject><subject>639/638/298/920</subject><subject>639/638/542/968</subject><subject>639/766/119/997</subject><subject>639/925/918/1052</subject><subject>Adsorption</subject><subject>Analysis</subject><subject>Antiferromagnetism</subject><subject>Carbon</subject><subject>Chemical properties</subject><subject>Dopants</subject><subject>Electron spin</subject><subject>Electron states</subject><subject>electronic properties and devices</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Functional integration</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>Hydrogen</subject><subject>magnetic materials</subject><subject>Magnetic properties</subject><subject>magnetic properties and materials</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Nanoribbons</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Particle spin</subject><subject>scanning probe microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Structure</subject><subject>Superlattices</subject><subject>Topography</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1v1DAQBmALgei28Ac4oKhcQCjFjvNhH1crPioqkOhKHC2vM05dJXZqOxLbX18vKdBFC8ohUvzMWDN5EXpB8BnBlL0LJalYneOC5LgsMMm3j9CClE2dlzVrHqMFxgXLMaP1EToO4RpjXJGmfIqOaMlpwzhfoM-Xo7FZGHsTo7Fd5nTWulHamEHbQRaijJAlMcjOQjQquzXdreyyzsvxCixkVlrnzWbjbHiGnmjZB3h-_z5B6w_v16tP-cXXj-er5UWu6gbHvNK4lFg1VBcNq7WmlKtW87aqJAdSSE4Ia6uatFpWtKW0bJgklGANGhqG6Qk6ndu6EI0IykRQV8pZCyoKwvFuFwm9ntHo3c0EIYrBBAV9Ly24KYiiJrRIN_Eq0Vd_0Ws3eZsm2Km6KBpePlCd7EEYq130Uu2aimXads15Giap_IDq0qK87J0FbdLnPX96wKvR3IiH6OwASk8Lg1EHu77ZK0gmwo_YySkEcX75bd--_bddrr-vvuzrYtbKuxA8aDF6M0i_FQSLXSjFHEqRQil-hlJsU9HL-wVPmwHa3yW_UpgAnUFIR7YD_-cP_KftHTBX50U</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Blackwell, Raymond E.</creator><creator>Zhao, Fangzhou</creator><creator>Brooks, Erin</creator><creator>Zhu, Junmian</creator><creator>Piskun, Ilya</creator><creator>Wang, Shenkai</creator><creator>Delgado, Aidan</creator><creator>Lee, Yea-Lee</creator><creator>Louie, Steven G.</creator><creator>Fischer, Felix R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-5834-0679</orcidid><orcidid>https://orcid.org/0000-0003-4723-3111</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid><orcidid>https://orcid.org/0000000347233111</orcidid><orcidid>https://orcid.org/0000000258340679</orcidid></search><sort><creationdate>20211223</creationdate><title>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</title><author>Blackwell, Raymond E. ; Zhao, Fangzhou ; Brooks, Erin ; Zhu, Junmian ; Piskun, Ilya ; Wang, Shenkai ; Delgado, Aidan ; Lee, Yea-Lee ; Louie, Steven G. ; Fischer, Felix R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>142/136</topic><topic>639/638/298/920</topic><topic>639/638/542/968</topic><topic>639/766/119/997</topic><topic>639/925/918/1052</topic><topic>Adsorption</topic><topic>Analysis</topic><topic>Antiferromagnetism</topic><topic>Carbon</topic><topic>Chemical properties</topic><topic>Dopants</topic><topic>Electron spin</topic><topic>Electron states</topic><topic>electronic properties and devices</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Functional integration</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>Hydrogen</topic><topic>magnetic materials</topic><topic>Magnetic properties</topic><topic>magnetic properties and materials</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Nanoribbons</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Particle spin</topic><topic>scanning probe microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Structure</topic><topic>Superlattices</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackwell, Raymond E.</creatorcontrib><creatorcontrib>Zhao, Fangzhou</creatorcontrib><creatorcontrib>Brooks, Erin</creatorcontrib><creatorcontrib>Zhu, Junmian</creatorcontrib><creatorcontrib>Piskun, Ilya</creatorcontrib><creatorcontrib>Wang, Shenkai</creatorcontrib><creatorcontrib>Delgado, Aidan</creatorcontrib><creatorcontrib>Lee, Yea-Lee</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Fischer, Felix R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackwell, Raymond E.</au><au>Zhao, Fangzhou</au><au>Brooks, Erin</au><au>Zhu, Junmian</au><au>Piskun, Ilya</au><au>Wang, Shenkai</au><au>Delgado, Aidan</au><au>Lee, Yea-Lee</au><au>Louie, Steven G.</au><au>Fischer, Felix R.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>600</volume><issue>7890</issue><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34937899</pmid><doi>10.1038/s41586-021-04201-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-5834-0679</orcidid><orcidid>https://orcid.org/0000-0003-4723-3111</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid><orcidid>https://orcid.org/0000000347233111</orcidid><orcidid>https://orcid.org/0000000258340679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-12, Vol.600 (7890), p.647-652
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1900420
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 119/118
142/136
639/638/298/920
639/638/542/968
639/766/119/997
639/925/918/1052
Adsorption
Analysis
Antiferromagnetism
Carbon
Chemical properties
Dopants
Electron spin
Electron states
electronic properties and devices
Ferromagnetism
First principles
Functional integration
Geometry
Graphene
Humanities and Social Sciences
Hybridization
Hydrogen
magnetic materials
Magnetic properties
magnetic properties and materials
MATERIALS SCIENCE
Microscopy
multidisciplinary
Nanoribbons
Nanotechnology
Nitrogen
Particle spin
scanning probe microscopy
Science
Science (multidisciplinary)
Spectroscopy
Spectrum analysis
Splitting
Structure
Superlattices
Topography
title Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20splitting%20of%20dopant%20edge%20state%20in%20magnetic%20zigzag%20graphene%20nanoribbons&rft.jtitle=Nature%20(London)&rft.au=Blackwell,%20Raymond%20E.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2021-12-23&rft.volume=600&rft.issue=7890&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04201-y&rft_dat=%3Cgale_osti_%3EA687699786%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616227945&rft_id=info:pmid/34937899&rft_galeid=A687699786&rfr_iscdi=true