Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parall...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-12, Vol.600 (7890), p.647-652 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 7890 |
container_start_page | 647 |
container_title | Nature (London) |
container_volume | 600 |
creator | Blackwell, Raymond E. Zhao, Fangzhou Brooks, Erin Zhu, Junmian Piskun, Ilya Wang, Shenkai Delgado, Aidan Lee, Yea-Lee Louie, Steven G. Fischer, Felix R. |
description | Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena
1
,
2
that have sparked renewed interest in carbon-based spintronics
3
,
4
. Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width
1
,
2
,
5
. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases
6
–
8
and even metallic zero mode bands
9
, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support
10
–
15
. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices
15
–
21
.
Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs. |
doi_str_mv | 10.1038/s41586-021-04201-y |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1900420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687699786</galeid><sourcerecordid>A687699786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</originalsourceid><addsrcrecordid>eNp90k1v1DAQBmALgei28Ac4oKhcQCjFjvNhH1crPioqkOhKHC2vM05dJXZqOxLbX18vKdBFC8ohUvzMWDN5EXpB8BnBlL0LJalYneOC5LgsMMm3j9CClE2dlzVrHqMFxgXLMaP1EToO4RpjXJGmfIqOaMlpwzhfoM-Xo7FZGHsTo7Fd5nTWulHamEHbQRaijJAlMcjOQjQquzXdreyyzsvxCixkVlrnzWbjbHiGnmjZB3h-_z5B6w_v16tP-cXXj-er5UWu6gbHvNK4lFg1VBcNq7WmlKtW87aqJAdSSE4Ia6uatFpWtKW0bJgklGANGhqG6Qk6ndu6EI0IykRQV8pZCyoKwvFuFwm9ntHo3c0EIYrBBAV9Ly24KYiiJrRIN_Eq0Vd_0Ws3eZsm2Km6KBpePlCd7EEYq130Uu2aimXads15Giap_IDq0qK87J0FbdLnPX96wKvR3IiH6OwASk8Lg1EHu77ZK0gmwo_YySkEcX75bd--_bddrr-vvuzrYtbKuxA8aDF6M0i_FQSLXSjFHEqRQil-hlJsU9HL-wVPmwHa3yW_UpgAnUFIR7YD_-cP_KftHTBX50U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616227945</pqid></control><display><type>article</type><title>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Blackwell, Raymond E. ; Zhao, Fangzhou ; Brooks, Erin ; Zhu, Junmian ; Piskun, Ilya ; Wang, Shenkai ; Delgado, Aidan ; Lee, Yea-Lee ; Louie, Steven G. ; Fischer, Felix R.</creator><creatorcontrib>Blackwell, Raymond E. ; Zhao, Fangzhou ; Brooks, Erin ; Zhu, Junmian ; Piskun, Ilya ; Wang, Shenkai ; Delgado, Aidan ; Lee, Yea-Lee ; Louie, Steven G. ; Fischer, Felix R. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena
1
,
2
that have sparked renewed interest in carbon-based spintronics
3
,
4
. Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width
1
,
2
,
5
. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases
6
–
8
and even metallic zero mode bands
9
, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support
10
–
15
. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices
15
–
21
.
Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04201-y</identifier><identifier>PMID: 34937899</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 142/136 ; 639/638/298/920 ; 639/638/542/968 ; 639/766/119/997 ; 639/925/918/1052 ; Adsorption ; Analysis ; Antiferromagnetism ; Carbon ; Chemical properties ; Dopants ; Electron spin ; Electron states ; electronic properties and devices ; Ferromagnetism ; First principles ; Functional integration ; Geometry ; Graphene ; Humanities and Social Sciences ; Hybridization ; Hydrogen ; magnetic materials ; Magnetic properties ; magnetic properties and materials ; MATERIALS SCIENCE ; Microscopy ; multidisciplinary ; Nanoribbons ; Nanotechnology ; Nitrogen ; Particle spin ; scanning probe microscopy ; Science ; Science (multidisciplinary) ; Spectroscopy ; Spectrum analysis ; Splitting ; Structure ; Superlattices ; Topography</subject><ispartof>Nature (London), 2021-12, Vol.600 (7890), p.647-652</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 23-Dec 30, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</citedby><cites>FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</cites><orcidid>0000-0003-0622-0170 ; 0000-0002-5834-0679 ; 0000-0003-4723-3111 ; 0000000306220170 ; 0000000347233111 ; 0000000258340679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04201-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04201-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34937899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1900420$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blackwell, Raymond E.</creatorcontrib><creatorcontrib>Zhao, Fangzhou</creatorcontrib><creatorcontrib>Brooks, Erin</creatorcontrib><creatorcontrib>Zhu, Junmian</creatorcontrib><creatorcontrib>Piskun, Ilya</creatorcontrib><creatorcontrib>Wang, Shenkai</creatorcontrib><creatorcontrib>Delgado, Aidan</creatorcontrib><creatorcontrib>Lee, Yea-Lee</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Fischer, Felix R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena
1
,
2
that have sparked renewed interest in carbon-based spintronics
3
,
4
. Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width
1
,
2
,
5
. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases
6
–
8
and even metallic zero mode bands
9
, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support
10
–
15
. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices
15
–
21
.
Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.</description><subject>119/118</subject><subject>142/136</subject><subject>639/638/298/920</subject><subject>639/638/542/968</subject><subject>639/766/119/997</subject><subject>639/925/918/1052</subject><subject>Adsorption</subject><subject>Analysis</subject><subject>Antiferromagnetism</subject><subject>Carbon</subject><subject>Chemical properties</subject><subject>Dopants</subject><subject>Electron spin</subject><subject>Electron states</subject><subject>electronic properties and devices</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Functional integration</subject><subject>Geometry</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization</subject><subject>Hydrogen</subject><subject>magnetic materials</subject><subject>Magnetic properties</subject><subject>magnetic properties and materials</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Nanoribbons</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Particle spin</subject><subject>scanning probe microscopy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Structure</subject><subject>Superlattices</subject><subject>Topography</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90k1v1DAQBmALgei28Ac4oKhcQCjFjvNhH1crPioqkOhKHC2vM05dJXZqOxLbX18vKdBFC8ohUvzMWDN5EXpB8BnBlL0LJalYneOC5LgsMMm3j9CClE2dlzVrHqMFxgXLMaP1EToO4RpjXJGmfIqOaMlpwzhfoM-Xo7FZGHsTo7Fd5nTWulHamEHbQRaijJAlMcjOQjQquzXdreyyzsvxCixkVlrnzWbjbHiGnmjZB3h-_z5B6w_v16tP-cXXj-er5UWu6gbHvNK4lFg1VBcNq7WmlKtW87aqJAdSSE4Ia6uatFpWtKW0bJgklGANGhqG6Qk6ndu6EI0IykRQV8pZCyoKwvFuFwm9ntHo3c0EIYrBBAV9Ly24KYiiJrRIN_Eq0Vd_0Ws3eZsm2Km6KBpePlCd7EEYq130Uu2aimXads15Giap_IDq0qK87J0FbdLnPX96wKvR3IiH6OwASk8Lg1EHu77ZK0gmwo_YySkEcX75bd--_bddrr-vvuzrYtbKuxA8aDF6M0i_FQSLXSjFHEqRQil-hlJsU9HL-wVPmwHa3yW_UpgAnUFIR7YD_-cP_KftHTBX50U</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Blackwell, Raymond E.</creator><creator>Zhao, Fangzhou</creator><creator>Brooks, Erin</creator><creator>Zhu, Junmian</creator><creator>Piskun, Ilya</creator><creator>Wang, Shenkai</creator><creator>Delgado, Aidan</creator><creator>Lee, Yea-Lee</creator><creator>Louie, Steven G.</creator><creator>Fischer, Felix R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-5834-0679</orcidid><orcidid>https://orcid.org/0000-0003-4723-3111</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid><orcidid>https://orcid.org/0000000347233111</orcidid><orcidid>https://orcid.org/0000000258340679</orcidid></search><sort><creationdate>20211223</creationdate><title>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</title><author>Blackwell, Raymond E. ; Zhao, Fangzhou ; Brooks, Erin ; Zhu, Junmian ; Piskun, Ilya ; Wang, Shenkai ; Delgado, Aidan ; Lee, Yea-Lee ; Louie, Steven G. ; Fischer, Felix R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-5f04a0c73f2786ff339cdf9d55a9e12a9118d561dfa53d33478a1310fefe7803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>142/136</topic><topic>639/638/298/920</topic><topic>639/638/542/968</topic><topic>639/766/119/997</topic><topic>639/925/918/1052</topic><topic>Adsorption</topic><topic>Analysis</topic><topic>Antiferromagnetism</topic><topic>Carbon</topic><topic>Chemical properties</topic><topic>Dopants</topic><topic>Electron spin</topic><topic>Electron states</topic><topic>electronic properties and devices</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Functional integration</topic><topic>Geometry</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization</topic><topic>Hydrogen</topic><topic>magnetic materials</topic><topic>Magnetic properties</topic><topic>magnetic properties and materials</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Nanoribbons</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Particle spin</topic><topic>scanning probe microscopy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Structure</topic><topic>Superlattices</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blackwell, Raymond E.</creatorcontrib><creatorcontrib>Zhao, Fangzhou</creatorcontrib><creatorcontrib>Brooks, Erin</creatorcontrib><creatorcontrib>Zhu, Junmian</creatorcontrib><creatorcontrib>Piskun, Ilya</creatorcontrib><creatorcontrib>Wang, Shenkai</creatorcontrib><creatorcontrib>Delgado, Aidan</creatorcontrib><creatorcontrib>Lee, Yea-Lee</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Fischer, Felix R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blackwell, Raymond E.</au><au>Zhao, Fangzhou</au><au>Brooks, Erin</au><au>Zhu, Junmian</au><au>Piskun, Ilya</au><au>Wang, Shenkai</au><au>Delgado, Aidan</au><au>Lee, Yea-Lee</au><au>Louie, Steven G.</au><au>Fischer, Felix R.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>600</volume><issue>7890</issue><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena
1
,
2
that have sparked renewed interest in carbon-based spintronics
3
,
4
. Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width
1
,
2
,
5
. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases
6
–
8
and even metallic zero mode bands
9
, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support
10
–
15
. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices
15
–
21
.
Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34937899</pmid><doi>10.1038/s41586-021-04201-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-5834-0679</orcidid><orcidid>https://orcid.org/0000-0003-4723-3111</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid><orcidid>https://orcid.org/0000000347233111</orcidid><orcidid>https://orcid.org/0000000258340679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-12, Vol.600 (7890), p.647-652 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1900420 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 119/118 142/136 639/638/298/920 639/638/542/968 639/766/119/997 639/925/918/1052 Adsorption Analysis Antiferromagnetism Carbon Chemical properties Dopants Electron spin Electron states electronic properties and devices Ferromagnetism First principles Functional integration Geometry Graphene Humanities and Social Sciences Hybridization Hydrogen magnetic materials Magnetic properties magnetic properties and materials MATERIALS SCIENCE Microscopy multidisciplinary Nanoribbons Nanotechnology Nitrogen Particle spin scanning probe microscopy Science Science (multidisciplinary) Spectroscopy Spectrum analysis Splitting Structure Superlattices Topography |
title | Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20splitting%20of%20dopant%20edge%20state%20in%20magnetic%20zigzag%20graphene%20nanoribbons&rft.jtitle=Nature%20(London)&rft.au=Blackwell,%20Raymond%20E.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2021-12-23&rft.volume=600&rft.issue=7890&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04201-y&rft_dat=%3Cgale_osti_%3EA687699786%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616227945&rft_id=info:pmid/34937899&rft_galeid=A687699786&rfr_iscdi=true |