Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy

•Additive manufacturing was utilized to produce light-weight AlMoNbTaTiZr multi-principal-element superalloy parts.•The alloy was characterized by a complex structure that enabled temperature-insensitive high-hardness up to 800 °C.•Density functional theory informed the alloy microstructure and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied materials today 2022-12, Vol.29, p.101669, Article 101669
Hauptverfasser: Kustas, Andrew B., Jones, Morgan R., DelRio, Frank W., Lu, Ping, Pegues, Jonathan, Singh, Prashant, Smirnov, A.V., Tiarks, Jordan, Hintsala, Eric D., Stauffer, Douglas D., Román-Kustas, Jessica K., Abere, Michael, White, Emma M.H., Johnson, Duane D., Anderson, Iver E., Argibay, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101669
container_title Applied materials today
container_volume 29
creator Kustas, Andrew B.
Jones, Morgan R.
DelRio, Frank W.
Lu, Ping
Pegues, Jonathan
Singh, Prashant
Smirnov, A.V.
Tiarks, Jordan
Hintsala, Eric D.
Stauffer, Douglas D.
Román-Kustas, Jessica K.
Abere, Michael
White, Emma M.H.
Johnson, Duane D.
Anderson, Iver E.
Argibay, Nicolas
description •Additive manufacturing was utilized to produce light-weight AlMoNbTaTiZr multi-principal-element superalloy parts.•The alloy was characterized by a complex structure that enabled temperature-insensitive high-hardness up to 800 °C.•Density functional theory informed the alloy microstructure and the resultant temperature-insensitive hardness properties.•The value proposition of combining advanced (additive) manufacturing with advanced alloy design tools is discussed. Materials are needed that can tolerate increasingly harsh environments, especially ones that retain high strength at extreme temperatures. Higher melting temperature alloys, like those consisting primarily of refractory elements, can greatly increase the efficiency of turbomachinery used in grid electricity production worldwide. Existing alloys, including Ni- and Co-based superalloys, used in components like turbine blades, bearings, and seals, remain a performance limiting factor due to their propensity, despite extensive optimization efforts, for softening and diffusion-driven elongation at temperatures often well above half their melting point. To address this critical materials challenge, we present results from integrating additive manufacturing and alloy design to guide significant improvements in performance via traditionally difficult-to-manufacture refractory alloys. We present an example of a multi-principal element alloy (MPEA), consisting of five refractory elements and aluminum, that exhibited high hardness and specific strength surpassing other known alloys, including superalloys. The alloy shows negligible softening up to 800°C and consists of four compositionally distinct phases, in distinction to previous work on MPEAs. Density functional theory calculations reveal a thermodynamic explanation for the observed temperature-independent hardness and favorability for the formation of this multiplicity of phases. [Display omitted]
doi_str_mv 10.1016/j.apmt.2022.101669
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1899319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352940722003031</els_id><sourcerecordid>S2352940722003031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-6d088bd40e58085773bd7e73e9dcc717e3cc81c457a65d6e3e6c8d28ffd8a6293</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsNT-AVfB_dQ8OpMMuJFSH1Bwo-uQJneclMyDJG3tv3fiiEs3914u53wcTpbdErwkmJT3-6Ua2rikmNKfR1ldZDPKCppXK1Jc_t2YX2eLEPYYj6KCkIrMMr_5ih5aQI3ypoMQkIqosZ8NitAO4FU8eEAnGxukkBv_8QRpImWMjfYI7oxa1R1qpZPSoPbgos0HbzttB-UQuJHeRRQOieZcf77JrmrlAix-9zz7eNq8r1_y7dvz6_pxm2vGScxLg4XYmRWGQmBRcM52hgNnUBmtOeHAtBZErwquysKUwKDUwlBR10aoklZsnt1N3D5EK4O2EXSj-64DHSURVcVIEtFJpH0fgodajtFb5c-SYJnKlHuZ2pWpXTm1O5oeJhOM8Y8WfKJDp8FYn-Cmt__ZvwHpiIYp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy</title><source>Alma/SFX Local Collection</source><creator>Kustas, Andrew B. ; Jones, Morgan R. ; DelRio, Frank W. ; Lu, Ping ; Pegues, Jonathan ; Singh, Prashant ; Smirnov, A.V. ; Tiarks, Jordan ; Hintsala, Eric D. ; Stauffer, Douglas D. ; Román-Kustas, Jessica K. ; Abere, Michael ; White, Emma M.H. ; Johnson, Duane D. ; Anderson, Iver E. ; Argibay, Nicolas</creator><creatorcontrib>Kustas, Andrew B. ; Jones, Morgan R. ; DelRio, Frank W. ; Lu, Ping ; Pegues, Jonathan ; Singh, Prashant ; Smirnov, A.V. ; Tiarks, Jordan ; Hintsala, Eric D. ; Stauffer, Douglas D. ; Román-Kustas, Jessica K. ; Abere, Michael ; White, Emma M.H. ; Johnson, Duane D. ; Anderson, Iver E. ; Argibay, Nicolas ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Ames Lab., Ames, IA (United States)</creatorcontrib><description>•Additive manufacturing was utilized to produce light-weight AlMoNbTaTiZr multi-principal-element superalloy parts.•The alloy was characterized by a complex structure that enabled temperature-insensitive high-hardness up to 800 °C.•Density functional theory informed the alloy microstructure and the resultant temperature-insensitive hardness properties.•The value proposition of combining advanced (additive) manufacturing with advanced alloy design tools is discussed. Materials are needed that can tolerate increasingly harsh environments, especially ones that retain high strength at extreme temperatures. Higher melting temperature alloys, like those consisting primarily of refractory elements, can greatly increase the efficiency of turbomachinery used in grid electricity production worldwide. Existing alloys, including Ni- and Co-based superalloys, used in components like turbine blades, bearings, and seals, remain a performance limiting factor due to their propensity, despite extensive optimization efforts, for softening and diffusion-driven elongation at temperatures often well above half their melting point. To address this critical materials challenge, we present results from integrating additive manufacturing and alloy design to guide significant improvements in performance via traditionally difficult-to-manufacture refractory alloys. We present an example of a multi-principal element alloy (MPEA), consisting of five refractory elements and aluminum, that exhibited high hardness and specific strength surpassing other known alloys, including superalloys. The alloy shows negligible softening up to 800°C and consists of four compositionally distinct phases, in distinction to previous work on MPEAs. Density functional theory calculations reveal a thermodynamic explanation for the observed temperature-independent hardness and favorability for the formation of this multiplicity of phases. [Display omitted]</description><identifier>ISSN: 2352-9407</identifier><identifier>EISSN: 2352-9415</identifier><identifier>DOI: 10.1016/j.apmt.2022.101669</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Additive manufacturing ; AM ; CCA ; Hardness ; HEA ; High-temperature ; MATERIALS SCIENCE ; MPEA ; Refractory ; Strength</subject><ispartof>Applied materials today, 2022-12, Vol.29, p.101669, Article 101669</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-6d088bd40e58085773bd7e73e9dcc717e3cc81c457a65d6e3e6c8d28ffd8a6293</citedby><cites>FETCH-LOGICAL-c371t-6d088bd40e58085773bd7e73e9dcc717e3cc81c457a65d6e3e6c8d28ffd8a6293</cites><orcidid>0000-0001-8316-4454 ; 0000-0003-1879-0234 ; 0000-0003-3886-7518 ; 0000-0002-6473-7568 ; 0000-0002-3460-9290 ; 0000-0002-0842-6474 ; 0000-0003-0794-7283 ; 0000-0001-7349-7597 ; 0000000234609290 ; 0000000264737568 ; 0000000338867518 ; 0000000183164454 ; 0000000208426474 ; 0000000318790234 ; 0000000173497597 ; 0000000307947283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1899319$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Pegues, Jonathan</creatorcontrib><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Smirnov, A.V.</creatorcontrib><creatorcontrib>Tiarks, Jordan</creatorcontrib><creatorcontrib>Hintsala, Eric D.</creatorcontrib><creatorcontrib>Stauffer, Douglas D.</creatorcontrib><creatorcontrib>Román-Kustas, Jessica K.</creatorcontrib><creatorcontrib>Abere, Michael</creatorcontrib><creatorcontrib>White, Emma M.H.</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Anderson, Iver E.</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><title>Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy</title><title>Applied materials today</title><description>•Additive manufacturing was utilized to produce light-weight AlMoNbTaTiZr multi-principal-element superalloy parts.•The alloy was characterized by a complex structure that enabled temperature-insensitive high-hardness up to 800 °C.•Density functional theory informed the alloy microstructure and the resultant temperature-insensitive hardness properties.•The value proposition of combining advanced (additive) manufacturing with advanced alloy design tools is discussed. Materials are needed that can tolerate increasingly harsh environments, especially ones that retain high strength at extreme temperatures. Higher melting temperature alloys, like those consisting primarily of refractory elements, can greatly increase the efficiency of turbomachinery used in grid electricity production worldwide. Existing alloys, including Ni- and Co-based superalloys, used in components like turbine blades, bearings, and seals, remain a performance limiting factor due to their propensity, despite extensive optimization efforts, for softening and diffusion-driven elongation at temperatures often well above half their melting point. To address this critical materials challenge, we present results from integrating additive manufacturing and alloy design to guide significant improvements in performance via traditionally difficult-to-manufacture refractory alloys. We present an example of a multi-principal element alloy (MPEA), consisting of five refractory elements and aluminum, that exhibited high hardness and specific strength surpassing other known alloys, including superalloys. The alloy shows negligible softening up to 800°C and consists of four compositionally distinct phases, in distinction to previous work on MPEAs. Density functional theory calculations reveal a thermodynamic explanation for the observed temperature-independent hardness and favorability for the formation of this multiplicity of phases. [Display omitted]</description><subject>Additive manufacturing</subject><subject>AM</subject><subject>CCA</subject><subject>Hardness</subject><subject>HEA</subject><subject>High-temperature</subject><subject>MATERIALS SCIENCE</subject><subject>MPEA</subject><subject>Refractory</subject><subject>Strength</subject><issn>2352-9407</issn><issn>2352-9415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsNT-AVfB_dQ8OpMMuJFSH1Bwo-uQJneclMyDJG3tv3fiiEs3914u53wcTpbdErwkmJT3-6Ua2rikmNKfR1ldZDPKCppXK1Jc_t2YX2eLEPYYj6KCkIrMMr_5ih5aQI3ypoMQkIqosZ8NitAO4FU8eEAnGxukkBv_8QRpImWMjfYI7oxa1R1qpZPSoPbgos0HbzttB-UQuJHeRRQOieZcf77JrmrlAix-9zz7eNq8r1_y7dvz6_pxm2vGScxLg4XYmRWGQmBRcM52hgNnUBmtOeHAtBZErwquysKUwKDUwlBR10aoklZsnt1N3D5EK4O2EXSj-64DHSURVcVIEtFJpH0fgodajtFb5c-SYJnKlHuZ2pWpXTm1O5oeJhOM8Y8WfKJDp8FYn-Cmt__ZvwHpiIYp</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Kustas, Andrew B.</creator><creator>Jones, Morgan R.</creator><creator>DelRio, Frank W.</creator><creator>Lu, Ping</creator><creator>Pegues, Jonathan</creator><creator>Singh, Prashant</creator><creator>Smirnov, A.V.</creator><creator>Tiarks, Jordan</creator><creator>Hintsala, Eric D.</creator><creator>Stauffer, Douglas D.</creator><creator>Román-Kustas, Jessica K.</creator><creator>Abere, Michael</creator><creator>White, Emma M.H.</creator><creator>Johnson, Duane D.</creator><creator>Anderson, Iver E.</creator><creator>Argibay, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8316-4454</orcidid><orcidid>https://orcid.org/0000-0003-1879-0234</orcidid><orcidid>https://orcid.org/0000-0003-3886-7518</orcidid><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid><orcidid>https://orcid.org/0000-0002-3460-9290</orcidid><orcidid>https://orcid.org/0000-0002-0842-6474</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0001-7349-7597</orcidid><orcidid>https://orcid.org/0000000234609290</orcidid><orcidid>https://orcid.org/0000000264737568</orcidid><orcidid>https://orcid.org/0000000338867518</orcidid><orcidid>https://orcid.org/0000000183164454</orcidid><orcidid>https://orcid.org/0000000208426474</orcidid><orcidid>https://orcid.org/0000000318790234</orcidid><orcidid>https://orcid.org/0000000173497597</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid></search><sort><creationdate>20221201</creationdate><title>Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy</title><author>Kustas, Andrew B. ; Jones, Morgan R. ; DelRio, Frank W. ; Lu, Ping ; Pegues, Jonathan ; Singh, Prashant ; Smirnov, A.V. ; Tiarks, Jordan ; Hintsala, Eric D. ; Stauffer, Douglas D. ; Román-Kustas, Jessica K. ; Abere, Michael ; White, Emma M.H. ; Johnson, Duane D. ; Anderson, Iver E. ; Argibay, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-6d088bd40e58085773bd7e73e9dcc717e3cc81c457a65d6e3e6c8d28ffd8a6293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>AM</topic><topic>CCA</topic><topic>Hardness</topic><topic>HEA</topic><topic>High-temperature</topic><topic>MATERIALS SCIENCE</topic><topic>MPEA</topic><topic>Refractory</topic><topic>Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Pegues, Jonathan</creatorcontrib><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Smirnov, A.V.</creatorcontrib><creatorcontrib>Tiarks, Jordan</creatorcontrib><creatorcontrib>Hintsala, Eric D.</creatorcontrib><creatorcontrib>Stauffer, Douglas D.</creatorcontrib><creatorcontrib>Román-Kustas, Jessica K.</creatorcontrib><creatorcontrib>Abere, Michael</creatorcontrib><creatorcontrib>White, Emma M.H.</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Anderson, Iver E.</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied materials today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kustas, Andrew B.</au><au>Jones, Morgan R.</au><au>DelRio, Frank W.</au><au>Lu, Ping</au><au>Pegues, Jonathan</au><au>Singh, Prashant</au><au>Smirnov, A.V.</au><au>Tiarks, Jordan</au><au>Hintsala, Eric D.</au><au>Stauffer, Douglas D.</au><au>Román-Kustas, Jessica K.</au><au>Abere, Michael</au><au>White, Emma M.H.</au><au>Johnson, Duane D.</au><au>Anderson, Iver E.</au><au>Argibay, Nicolas</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy</atitle><jtitle>Applied materials today</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>29</volume><spage>101669</spage><pages>101669-</pages><artnum>101669</artnum><issn>2352-9407</issn><eissn>2352-9415</eissn><abstract>•Additive manufacturing was utilized to produce light-weight AlMoNbTaTiZr multi-principal-element superalloy parts.•The alloy was characterized by a complex structure that enabled temperature-insensitive high-hardness up to 800 °C.•Density functional theory informed the alloy microstructure and the resultant temperature-insensitive hardness properties.•The value proposition of combining advanced (additive) manufacturing with advanced alloy design tools is discussed. Materials are needed that can tolerate increasingly harsh environments, especially ones that retain high strength at extreme temperatures. Higher melting temperature alloys, like those consisting primarily of refractory elements, can greatly increase the efficiency of turbomachinery used in grid electricity production worldwide. Existing alloys, including Ni- and Co-based superalloys, used in components like turbine blades, bearings, and seals, remain a performance limiting factor due to their propensity, despite extensive optimization efforts, for softening and diffusion-driven elongation at temperatures often well above half their melting point. To address this critical materials challenge, we present results from integrating additive manufacturing and alloy design to guide significant improvements in performance via traditionally difficult-to-manufacture refractory alloys. We present an example of a multi-principal element alloy (MPEA), consisting of five refractory elements and aluminum, that exhibited high hardness and specific strength surpassing other known alloys, including superalloys. The alloy shows negligible softening up to 800°C and consists of four compositionally distinct phases, in distinction to previous work on MPEAs. Density functional theory calculations reveal a thermodynamic explanation for the observed temperature-independent hardness and favorability for the formation of this multiplicity of phases. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apmt.2022.101669</doi><orcidid>https://orcid.org/0000-0001-8316-4454</orcidid><orcidid>https://orcid.org/0000-0003-1879-0234</orcidid><orcidid>https://orcid.org/0000-0003-3886-7518</orcidid><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid><orcidid>https://orcid.org/0000-0002-3460-9290</orcidid><orcidid>https://orcid.org/0000-0002-0842-6474</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0001-7349-7597</orcidid><orcidid>https://orcid.org/0000000234609290</orcidid><orcidid>https://orcid.org/0000000264737568</orcidid><orcidid>https://orcid.org/0000000338867518</orcidid><orcidid>https://orcid.org/0000000183164454</orcidid><orcidid>https://orcid.org/0000000208426474</orcidid><orcidid>https://orcid.org/0000000318790234</orcidid><orcidid>https://orcid.org/0000000173497597</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-9407
ispartof Applied materials today, 2022-12, Vol.29, p.101669, Article 101669
issn 2352-9407
2352-9415
language eng
recordid cdi_osti_scitechconnect_1899319
source Alma/SFX Local Collection
subjects Additive manufacturing
AM
CCA
Hardness
HEA
High-temperature
MATERIALS SCIENCE
MPEA
Refractory
Strength
title Extreme hardness at high temperature with a lightweight additively manufactured multi-principal element superalloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20hardness%20at%20high%20temperature%20with%20a%20lightweight%20additively%20manufactured%20multi-principal%20element%20superalloy&rft.jtitle=Applied%20materials%20today&rft.au=Kustas,%20Andrew%20B.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-12-01&rft.volume=29&rft.spage=101669&rft.pages=101669-&rft.artnum=101669&rft.issn=2352-9407&rft.eissn=2352-9415&rft_id=info:doi/10.1016/j.apmt.2022.101669&rft_dat=%3Celsevier_osti_%3ES2352940722003031%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2352940722003031&rfr_iscdi=true