Relativistic mean-field theories for neutron-star physics based on chiral effective field theory

We describe and implement a procedure for determining the couplings of a relativistic mean-field theory (RMFT) that is optimized for application to neutron star phenomenology. In the standard RMFT approach, the couplings are constrained by comparing the theory's predictions for symmetric matter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. C 2022-11, Vol.106 (5), Article 055804
Hauptverfasser: Alford, M. G., Brodie, L., Haber, A., Tews, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. C
container_volume 106
creator Alford, M. G.
Brodie, L.
Haber, A.
Tews, I.
description We describe and implement a procedure for determining the couplings of a relativistic mean-field theory (RMFT) that is optimized for application to neutron star phenomenology. In the standard RMFT approach, the couplings are constrained by comparing the theory's predictions for symmetric matter at saturation density with measured nuclear properties. The theory is then applied to neutron stars which consist of neutron-rich matter at densities ranging up to several times saturation density, which allows for additional astrophysical constraints. In our approach, rather than using the RMFT to extrapolate from symmetric to neutron-rich matter and from finite-sized nuclei to uniform matter, we fit the RMFT to properties of uniform pure neutron matter obtained from chiral effective field theory. Chiral effective field theory incorporates the experimental data for nuclei in the framework of a controlled expansion for nuclear forces valid at nuclear densities and enables us to account for theoretical uncertainties when fitting the RMFT. We construct four simple RMFTs that span the uncertainties provided by chiral effective field theory for neutron matter, and are consistent with current astrophysical constraints on the equation of state. Lastly, our RMFTs can be used to model the properties of neutron-rich matter across the vast range of densities and temperatures encountered in neutron stars and their mergers.
doi_str_mv 10.1103/PhysRevC.106.055804
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1898399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_106_055804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-c9bf848edccae36b76da8dbd64e6a92d7c6734c1317fc36b2c78b4177a237e5c3</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWGp_gZfgfWuy2c3jKMVHoaAUPcfsZMJGtrslWQv9965UxdMMM8M3Mx8h15wtOWfi9qU95i0eVkvO5JLVtWbVGZmVlTSFMUac_-W6viSLnD8YY1wyozibkfctdm6Mh5jHCHSHri9CxM7TscUhRcw0DIn2-DmmoS_y6BLdT_siZNq4jJ4OPYU2JtdRDAFhQiH9RzhekYvguoyLnzgnbw_3r6unYvP8uF7dbQoolRwLME3QlUYP4FDIRknvtG-8rFA6U3oFUokKuOAqwNQvQemm4kq5UiisQczJzYk7TJ_YDHFEaGHo--kmy7XRYnIxJ-I0BGnIOWGw-xR3Lh0tZ_Zbpv2VORWkPckUX1g3a9U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relativistic mean-field theories for neutron-star physics based on chiral effective field theory</title><source>American Physical Society Journals</source><creator>Alford, M. G. ; Brodie, L. ; Haber, A. ; Tews, I.</creator><creatorcontrib>Alford, M. G. ; Brodie, L. ; Haber, A. ; Tews, I. ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>We describe and implement a procedure for determining the couplings of a relativistic mean-field theory (RMFT) that is optimized for application to neutron star phenomenology. In the standard RMFT approach, the couplings are constrained by comparing the theory's predictions for symmetric matter at saturation density with measured nuclear properties. The theory is then applied to neutron stars which consist of neutron-rich matter at densities ranging up to several times saturation density, which allows for additional astrophysical constraints. In our approach, rather than using the RMFT to extrapolate from symmetric to neutron-rich matter and from finite-sized nuclei to uniform matter, we fit the RMFT to properties of uniform pure neutron matter obtained from chiral effective field theory. Chiral effective field theory incorporates the experimental data for nuclei in the framework of a controlled expansion for nuclear forces valid at nuclear densities and enables us to account for theoretical uncertainties when fitting the RMFT. We construct four simple RMFTs that span the uncertainties provided by chiral effective field theory for neutron matter, and are consistent with current astrophysical constraints on the equation of state. Lastly, our RMFTs can be used to model the properties of neutron-rich matter across the vast range of densities and temperatures encountered in neutron stars and their mergers.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.106.055804</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>asymmetric nuclear matter ; chiral effective theory ; chiral perturbation theory ; effective field theory ; equations of state of nuclear matter ; neutron star ; nuclear forces ; nuclear matter ; nuclear matter in neutron stars ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; relativistic mean field theory ; symmetry energy</subject><ispartof>Physical review. C, 2022-11, Vol.106 (5), Article 055804</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-c9bf848edccae36b76da8dbd64e6a92d7c6734c1317fc36b2c78b4177a237e5c3</citedby><cites>FETCH-LOGICAL-c276t-c9bf848edccae36b76da8dbd64e6a92d7c6734c1317fc36b2c78b4177a237e5c3</cites><orcidid>0000-0003-2656-6355 ; 0000-0001-9675-7005 ; 0000-0002-5511-9565 ; 0000-0001-7708-2073 ; 0000000326566355 ; 0000000177082073 ; 0000000255119565 ; 0000000196757005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1898399$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alford, M. G.</creatorcontrib><creatorcontrib>Brodie, L.</creatorcontrib><creatorcontrib>Haber, A.</creatorcontrib><creatorcontrib>Tews, I.</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Relativistic mean-field theories for neutron-star physics based on chiral effective field theory</title><title>Physical review. C</title><description>We describe and implement a procedure for determining the couplings of a relativistic mean-field theory (RMFT) that is optimized for application to neutron star phenomenology. In the standard RMFT approach, the couplings are constrained by comparing the theory's predictions for symmetric matter at saturation density with measured nuclear properties. The theory is then applied to neutron stars which consist of neutron-rich matter at densities ranging up to several times saturation density, which allows for additional astrophysical constraints. In our approach, rather than using the RMFT to extrapolate from symmetric to neutron-rich matter and from finite-sized nuclei to uniform matter, we fit the RMFT to properties of uniform pure neutron matter obtained from chiral effective field theory. Chiral effective field theory incorporates the experimental data for nuclei in the framework of a controlled expansion for nuclear forces valid at nuclear densities and enables us to account for theoretical uncertainties when fitting the RMFT. We construct four simple RMFTs that span the uncertainties provided by chiral effective field theory for neutron matter, and are consistent with current astrophysical constraints on the equation of state. Lastly, our RMFTs can be used to model the properties of neutron-rich matter across the vast range of densities and temperatures encountered in neutron stars and their mergers.</description><subject>asymmetric nuclear matter</subject><subject>chiral effective theory</subject><subject>chiral perturbation theory</subject><subject>effective field theory</subject><subject>equations of state of nuclear matter</subject><subject>neutron star</subject><subject>nuclear forces</subject><subject>nuclear matter</subject><subject>nuclear matter in neutron stars</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>relativistic mean field theory</subject><subject>symmetry energy</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEQgIMoWGp_gZfgfWuy2c3jKMVHoaAUPcfsZMJGtrslWQv9965UxdMMM8M3Mx8h15wtOWfi9qU95i0eVkvO5JLVtWbVGZmVlTSFMUac_-W6viSLnD8YY1wyozibkfctdm6Mh5jHCHSHri9CxM7TscUhRcw0DIn2-DmmoS_y6BLdT_siZNq4jJ4OPYU2JtdRDAFhQiH9RzhekYvguoyLnzgnbw_3r6unYvP8uF7dbQoolRwLME3QlUYP4FDIRknvtG-8rFA6U3oFUokKuOAqwNQvQemm4kq5UiisQczJzYk7TJ_YDHFEaGHo--kmy7XRYnIxJ-I0BGnIOWGw-xR3Lh0tZ_Zbpv2VORWkPckUX1g3a9U</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Alford, M. G.</creator><creator>Brodie, L.</creator><creator>Haber, A.</creator><creator>Tews, I.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/0000-0001-9675-7005</orcidid><orcidid>https://orcid.org/0000-0002-5511-9565</orcidid><orcidid>https://orcid.org/0000-0001-7708-2073</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid><orcidid>https://orcid.org/0000000177082073</orcidid><orcidid>https://orcid.org/0000000255119565</orcidid><orcidid>https://orcid.org/0000000196757005</orcidid></search><sort><creationdate>20221115</creationdate><title>Relativistic mean-field theories for neutron-star physics based on chiral effective field theory</title><author>Alford, M. G. ; Brodie, L. ; Haber, A. ; Tews, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-c9bf848edccae36b76da8dbd64e6a92d7c6734c1317fc36b2c78b4177a237e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asymmetric nuclear matter</topic><topic>chiral effective theory</topic><topic>chiral perturbation theory</topic><topic>effective field theory</topic><topic>equations of state of nuclear matter</topic><topic>neutron star</topic><topic>nuclear forces</topic><topic>nuclear matter</topic><topic>nuclear matter in neutron stars</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>relativistic mean field theory</topic><topic>symmetry energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alford, M. G.</creatorcontrib><creatorcontrib>Brodie, L.</creatorcontrib><creatorcontrib>Haber, A.</creatorcontrib><creatorcontrib>Tews, I.</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alford, M. G.</au><au>Brodie, L.</au><au>Haber, A.</au><au>Tews, I.</au><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relativistic mean-field theories for neutron-star physics based on chiral effective field theory</atitle><jtitle>Physical review. C</jtitle><date>2022-11-15</date><risdate>2022</risdate><volume>106</volume><issue>5</issue><artnum>055804</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>We describe and implement a procedure for determining the couplings of a relativistic mean-field theory (RMFT) that is optimized for application to neutron star phenomenology. In the standard RMFT approach, the couplings are constrained by comparing the theory's predictions for symmetric matter at saturation density with measured nuclear properties. The theory is then applied to neutron stars which consist of neutron-rich matter at densities ranging up to several times saturation density, which allows for additional astrophysical constraints. In our approach, rather than using the RMFT to extrapolate from symmetric to neutron-rich matter and from finite-sized nuclei to uniform matter, we fit the RMFT to properties of uniform pure neutron matter obtained from chiral effective field theory. Chiral effective field theory incorporates the experimental data for nuclei in the framework of a controlled expansion for nuclear forces valid at nuclear densities and enables us to account for theoretical uncertainties when fitting the RMFT. We construct four simple RMFTs that span the uncertainties provided by chiral effective field theory for neutron matter, and are consistent with current astrophysical constraints on the equation of state. Lastly, our RMFTs can be used to model the properties of neutron-rich matter across the vast range of densities and temperatures encountered in neutron stars and their mergers.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.106.055804</doi><orcidid>https://orcid.org/0000-0003-2656-6355</orcidid><orcidid>https://orcid.org/0000-0001-9675-7005</orcidid><orcidid>https://orcid.org/0000-0002-5511-9565</orcidid><orcidid>https://orcid.org/0000-0001-7708-2073</orcidid><orcidid>https://orcid.org/0000000326566355</orcidid><orcidid>https://orcid.org/0000000177082073</orcidid><orcidid>https://orcid.org/0000000255119565</orcidid><orcidid>https://orcid.org/0000000196757005</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9985
ispartof Physical review. C, 2022-11, Vol.106 (5), Article 055804
issn 2469-9985
2469-9993
language eng
recordid cdi_osti_scitechconnect_1898399
source American Physical Society Journals
subjects asymmetric nuclear matter
chiral effective theory
chiral perturbation theory
effective field theory
equations of state of nuclear matter
neutron star
nuclear forces
nuclear matter
nuclear matter in neutron stars
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
relativistic mean field theory
symmetry energy
title Relativistic mean-field theories for neutron-star physics based on chiral effective field theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relativistic%20mean-field%20theories%20for%20neutron-star%20physics%20based%20on%20chiral%20effective%20field%20theory&rft.jtitle=Physical%20review.%20C&rft.au=Alford,%20M.%20G.&rft.aucorp=Washington%20Univ.,%20St.%20Louis,%20MO%20(United%20States)&rft.date=2022-11-15&rft.volume=106&rft.issue=5&rft.artnum=055804&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.106.055804&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_106_055804%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true