Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX
We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wa...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2011-08, Vol.415 (1), p.S360-S364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S364 |
---|---|
container_issue | 1 |
container_start_page | S360 |
container_title | Journal of nuclear materials |
container_volume | 415 |
creator | Gray, T.K. Maingi, R. Soukhanovskii, V.A. Surany, J.E. Ahn, J.-W. McLean, A.G. |
description | We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s. |
doi_str_mv | 10.1016/j.jnucmat.2011.01.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1898294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311511000523</els_id><sourcerecordid>1671550869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</originalsourceid><addsrcrecordid>eNqFkV2L1TAQhsOi4HH1JwhBELzYHpO0aZMrkf2GRS9cwbuQTaY2h56kJul-_PtNtwdvhYGBmWfmHd5B6AMlW0po-2W33fnZ7HXeMkLplpRg8ghtqOjqqhGMvEIbQhirakr5G_Q2pR0hhEvCN2g4gwm8BW8Ahx5bdw8xh4gH0Bn34_yIH5zNQ8LBv9Sc_4On8ADxZO3C46R9csGfYO0tnkad9hqbOUbwGTuP8wD4-8_b3-_Q616PCd4f8jH6dXF-e3pV3fy4vD79dlMZTlmuOqaBgr3raqslb0jT8kaAgVLlknadlG1Hqem57mtNqJC6a1ohpKXGyt6Q-hh9XPeGlJ1KxmUwgwneg8mq8ILJpkCfV2iK4e8MKau9SwbGUXsIc1K0iHBORCsLylfUxJBShF5N0e11fFKUqMV-tVMH-9VivyIl2DL36SChk9FjH7U3Lv0bZk0n2przwn1dOSim3DuIy83LO6yLy8k2uP8oPQP37J2B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671550869</pqid></control><display><type>article</type><title>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gray, T.K. ; Maingi, R. ; Soukhanovskii, V.A. ; Surany, J.E. ; Ahn, J.-W. ; McLean, A.G.</creator><creatorcontrib>Gray, T.K. ; Maingi, R. ; Soukhanovskii, V.A. ; Surany, J.E. ; Ahn, J.-W. ; McLean, A.G. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2011.01.029</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Applied sciences ; Contracts ; Controled nuclear fusion plants ; divertor, thermal load ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Heat flux ; Heat transfer ; Heating ; Infrared ; Installations for energy generation and conversion: thermal and electrical energy ; IR-thermography ; NSTX ; Nuclear fuels ; Nuclear power generation ; Plasma currents ; Walls</subject><ispartof>Journal of nuclear materials, 2011-08, Vol.415 (1), p.S360-S364</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</citedby><cites>FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311511000523$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24786355$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1898294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, T.K.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Soukhanovskii, V.A.</creatorcontrib><creatorcontrib>Surany, J.E.</creatorcontrib><creatorcontrib>Ahn, J.-W.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</title><title>Journal of nuclear materials</title><description>We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Applied sciences</subject><subject>Contracts</subject><subject>Controled nuclear fusion plants</subject><subject>divertor, thermal load</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Infrared</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>IR-thermography</subject><subject>NSTX</subject><subject>Nuclear fuels</subject><subject>Nuclear power generation</subject><subject>Plasma currents</subject><subject>Walls</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkV2L1TAQhsOi4HH1JwhBELzYHpO0aZMrkf2GRS9cwbuQTaY2h56kJul-_PtNtwdvhYGBmWfmHd5B6AMlW0po-2W33fnZ7HXeMkLplpRg8ghtqOjqqhGMvEIbQhirakr5G_Q2pR0hhEvCN2g4gwm8BW8Ahx5bdw8xh4gH0Bn34_yIH5zNQ8LBv9Sc_4On8ADxZO3C46R9csGfYO0tnkad9hqbOUbwGTuP8wD4-8_b3-_Q616PCd4f8jH6dXF-e3pV3fy4vD79dlMZTlmuOqaBgr3raqslb0jT8kaAgVLlknadlG1Hqem57mtNqJC6a1ohpKXGyt6Q-hh9XPeGlJ1KxmUwgwneg8mq8ILJpkCfV2iK4e8MKau9SwbGUXsIc1K0iHBORCsLylfUxJBShF5N0e11fFKUqMV-tVMH-9VivyIl2DL36SChk9FjH7U3Lv0bZk0n2przwn1dOSim3DuIy83LO6yLy8k2uP8oPQP37J2B</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Gray, T.K.</creator><creator>Maingi, R.</creator><creator>Soukhanovskii, V.A.</creator><creator>Surany, J.E.</creator><creator>Ahn, J.-W.</creator><creator>McLean, A.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110801</creationdate><title>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</title><author>Gray, T.K. ; Maingi, R. ; Soukhanovskii, V.A. ; Surany, J.E. ; Ahn, J.-W. ; McLean, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Applied sciences</topic><topic>Contracts</topic><topic>Controled nuclear fusion plants</topic><topic>divertor, thermal load</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Infrared</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>IR-thermography</topic><topic>NSTX</topic><topic>Nuclear fuels</topic><topic>Nuclear power generation</topic><topic>Plasma currents</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, T.K.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Soukhanovskii, V.A.</creatorcontrib><creatorcontrib>Surany, J.E.</creatorcontrib><creatorcontrib>Ahn, J.-W.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, T.K.</au><au>Maingi, R.</au><au>Soukhanovskii, V.A.</au><au>Surany, J.E.</au><au>Ahn, J.-W.</au><au>McLean, A.G.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</atitle><jtitle>Journal of nuclear materials</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>415</volume><issue>1</issue><spage>S360</spage><epage>S364</epage><pages>S360-S364</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2011.01.029</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2011-08, Vol.415 (1), p.S360-S364 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1898294 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Applied sciences Contracts Controled nuclear fusion plants divertor, thermal load Energy Energy. Thermal use of fuels Exact sciences and technology Fission nuclear power plants Fuels Heat flux Heat transfer Heating Infrared Installations for energy generation and conversion: thermal and electrical energy IR-thermography NSTX Nuclear fuels Nuclear power generation Plasma currents Walls |
title | Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20divertor%20heat%20flux%20widths%20on%20heating%20power,%20flux%20expansion,%20and%20plasma%20current%20in%20the%20NSTX&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Gray,%20T.K.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2011-08-01&rft.volume=415&rft.issue=1&rft.spage=S360&rft.epage=S364&rft.pages=S360-S364&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2011.01.029&rft_dat=%3Cproquest_osti_%3E1671550869%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671550869&rft_id=info:pmid/&rft_els_id=S0022311511000523&rfr_iscdi=true |