Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX

We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2011-08, Vol.415 (1), p.S360-S364
Hauptverfasser: Gray, T.K., Maingi, R., Soukhanovskii, V.A., Surany, J.E., Ahn, J.-W., McLean, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S364
container_issue 1
container_start_page S360
container_title Journal of nuclear materials
container_volume 415
creator Gray, T.K.
Maingi, R.
Soukhanovskii, V.A.
Surany, J.E.
Ahn, J.-W.
McLean, A.G.
description We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.
doi_str_mv 10.1016/j.jnucmat.2011.01.029
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1898294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311511000523</els_id><sourcerecordid>1671550869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</originalsourceid><addsrcrecordid>eNqFkV2L1TAQhsOi4HH1JwhBELzYHpO0aZMrkf2GRS9cwbuQTaY2h56kJul-_PtNtwdvhYGBmWfmHd5B6AMlW0po-2W33fnZ7HXeMkLplpRg8ghtqOjqqhGMvEIbQhirakr5G_Q2pR0hhEvCN2g4gwm8BW8Ahx5bdw8xh4gH0Bn34_yIH5zNQ8LBv9Sc_4On8ADxZO3C46R9csGfYO0tnkad9hqbOUbwGTuP8wD4-8_b3-_Q616PCd4f8jH6dXF-e3pV3fy4vD79dlMZTlmuOqaBgr3raqslb0jT8kaAgVLlknadlG1Hqem57mtNqJC6a1ohpKXGyt6Q-hh9XPeGlJ1KxmUwgwneg8mq8ILJpkCfV2iK4e8MKau9SwbGUXsIc1K0iHBORCsLylfUxJBShF5N0e11fFKUqMV-tVMH-9VivyIl2DL36SChk9FjH7U3Lv0bZk0n2przwn1dOSim3DuIy83LO6yLy8k2uP8oPQP37J2B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671550869</pqid></control><display><type>article</type><title>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gray, T.K. ; Maingi, R. ; Soukhanovskii, V.A. ; Surany, J.E. ; Ahn, J.-W. ; McLean, A.G.</creator><creatorcontrib>Gray, T.K. ; Maingi, R. ; Soukhanovskii, V.A. ; Surany, J.E. ; Ahn, J.-W. ; McLean, A.G. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2011.01.029</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Applied sciences ; Contracts ; Controled nuclear fusion plants ; divertor, thermal load ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Heat flux ; Heat transfer ; Heating ; Infrared ; Installations for energy generation and conversion: thermal and electrical energy ; IR-thermography ; NSTX ; Nuclear fuels ; Nuclear power generation ; Plasma currents ; Walls</subject><ispartof>Journal of nuclear materials, 2011-08, Vol.415 (1), p.S360-S364</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</citedby><cites>FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311511000523$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24786355$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1898294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, T.K.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Soukhanovskii, V.A.</creatorcontrib><creatorcontrib>Surany, J.E.</creatorcontrib><creatorcontrib>Ahn, J.-W.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</title><title>Journal of nuclear materials</title><description>We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Applied sciences</subject><subject>Contracts</subject><subject>Controled nuclear fusion plants</subject><subject>divertor, thermal load</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Infrared</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>IR-thermography</subject><subject>NSTX</subject><subject>Nuclear fuels</subject><subject>Nuclear power generation</subject><subject>Plasma currents</subject><subject>Walls</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkV2L1TAQhsOi4HH1JwhBELzYHpO0aZMrkf2GRS9cwbuQTaY2h56kJul-_PtNtwdvhYGBmWfmHd5B6AMlW0po-2W33fnZ7HXeMkLplpRg8ghtqOjqqhGMvEIbQhirakr5G_Q2pR0hhEvCN2g4gwm8BW8Ahx5bdw8xh4gH0Bn34_yIH5zNQ8LBv9Sc_4On8ADxZO3C46R9csGfYO0tnkad9hqbOUbwGTuP8wD4-8_b3-_Q616PCd4f8jH6dXF-e3pV3fy4vD79dlMZTlmuOqaBgr3raqslb0jT8kaAgVLlknadlG1Hqem57mtNqJC6a1ohpKXGyt6Q-hh9XPeGlJ1KxmUwgwneg8mq8ILJpkCfV2iK4e8MKau9SwbGUXsIc1K0iHBORCsLylfUxJBShF5N0e11fFKUqMV-tVMH-9VivyIl2DL36SChk9FjH7U3Lv0bZk0n2przwn1dOSim3DuIy83LO6yLy8k2uP8oPQP37J2B</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Gray, T.K.</creator><creator>Maingi, R.</creator><creator>Soukhanovskii, V.A.</creator><creator>Surany, J.E.</creator><creator>Ahn, J.-W.</creator><creator>McLean, A.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110801</creationdate><title>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</title><author>Gray, T.K. ; Maingi, R. ; Soukhanovskii, V.A. ; Surany, J.E. ; Ahn, J.-W. ; McLean, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-72ae1edb73da954046548eceae159177996711cf5af3a0189a746889d1cd9fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Applied sciences</topic><topic>Contracts</topic><topic>Controled nuclear fusion plants</topic><topic>divertor, thermal load</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Infrared</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>IR-thermography</topic><topic>NSTX</topic><topic>Nuclear fuels</topic><topic>Nuclear power generation</topic><topic>Plasma currents</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, T.K.</creatorcontrib><creatorcontrib>Maingi, R.</creatorcontrib><creatorcontrib>Soukhanovskii, V.A.</creatorcontrib><creatorcontrib>Surany, J.E.</creatorcontrib><creatorcontrib>Ahn, J.-W.</creatorcontrib><creatorcontrib>McLean, A.G.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, T.K.</au><au>Maingi, R.</au><au>Soukhanovskii, V.A.</au><au>Surany, J.E.</au><au>Ahn, J.-W.</au><au>McLean, A.G.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX</atitle><jtitle>Journal of nuclear materials</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>415</volume><issue>1</issue><spage>S360</spage><epage>S364</epage><pages>S360-S364</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>We report the dependence of the lower divertor surface heat flux profiles, measured from infrared thermography and mapped magnetically to the mid-plane on loss power into the scrape-off layer (PLOSS), plasma current (Ip), and magnetic flux expansion (fexp), as well as initial results with lithium wall conditioning in NSTX. Here we extend previous studies [R. Maingi et al., J. Nucl. Mater. 363–365 (2007) 196–200] to higher triangularity ∼0.7 and higher Ip⩽1.2MA. First we note that the mid-plane heat flux width mapped to the mid-plane, λqmid, is largely independent of PLOSS for PLOSS⩾4MW. λqmid is also found to be relatively independent of fexp; peak heat flux is strongly reduced as fexp is increased, as expected. Finally, λqmid is shown to strongly contract with increasing Ip such that λqmid∝Ip-1.6 with a peak divertor heat flux of qdiv, peak∼15MW/m2 when Ip=1.2MA and PLOSS∼6MW. These relationships are then used to predict the divertor heat flux for the planned NSTX-Upgrade, with heating power between 10 and 15MW, Bt=1.0T and Ip=2.0MA for 5s.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2011.01.029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2011-08, Vol.415 (1), p.S360-S364
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1898294
source Elsevier ScienceDirect Journals Complete
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Applied sciences
Contracts
Controled nuclear fusion plants
divertor, thermal load
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Heat flux
Heat transfer
Heating
Infrared
Installations for energy generation and conversion: thermal and electrical energy
IR-thermography
NSTX
Nuclear fuels
Nuclear power generation
Plasma currents
Walls
title Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20divertor%20heat%20flux%20widths%20on%20heating%20power,%20flux%20expansion,%20and%20plasma%20current%20in%20the%20NSTX&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Gray,%20T.K.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2011-08-01&rft.volume=415&rft.issue=1&rft.spage=S360&rft.epage=S364&rft.pages=S360-S364&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2011.01.029&rft_dat=%3Cproquest_osti_%3E1671550869%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671550869&rft_id=info:pmid/&rft_els_id=S0022311511000523&rfr_iscdi=true