Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)
The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fus...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2022-08, Vol.93 (8) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 93 |
creator | Kunimune, J. H. Gatu Johnson, M. Moore, A. S. Trosseille, C. A. Johnson, T. M. Berg, G. P. A. Mackinnon, A. J. Kilkenny, J. D. Frenje, J. A. |
description | The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10
17
. The PDDT will be used for optimal efficiency and resolution in phase 3. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1898039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898039</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18980393</originalsourceid><addsrcrecordid>eNqNjMuKwkAQRRtxwOj4D4UrXQQ6Ex_JWgy6ERfupempJCX9CN3FwCz8d2PwA7ybC5d7zkgkmSzKdLf9yccikTJfp9vdupiIaYx32WeTZYl4XFoV8Rc6oxzUPgC3CGQ7gxYdKybvwNfDymQxDRi9-SPXgFWNQyYNAbUnA7FDzcFbZAzQUy_kPAiUgVPjaHBVSpMh_ofl-VStvsVXrUzE-btnYlEdrvtj6iPTLWpi1K32zvXqW1aUhczL_KPTE8xGULE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kunimune, J. H. ; Gatu Johnson, M. ; Moore, A. S. ; Trosseille, C. A. ; Johnson, T. M. ; Berg, G. P. A. ; Mackinnon, A. J. ; Kilkenny, J. D. ; Frenje, J. A.</creator><creatorcontrib>Kunimune, J. H. ; Gatu Johnson, M. ; Moore, A. S. ; Trosseille, C. A. ; Johnson, T. M. ; Berg, G. P. A. ; Mackinnon, A. J. ; Kilkenny, J. D. ; Frenje, J. A. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</creatorcontrib><description>The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10
17
. The PDDT will be used for optimal efficiency and resolution in phase 3.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>Deuterium ; Microchannel plate detectors ; Monte Carlo methods ; Neutron spectra ; OTHER INSTRUMENTATION ; Plasma confinement ; Pulse-dilation ; Spectroscopy ; Streak cameras</subject><ispartof>Review of scientific instruments, 2022-08, Vol.93 (8)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000243802906 ; 0000000193032949 ; 0000000223831275 ; 0000000168460378 ; 0000000221258882 ; 0000000266476103 ; 0000000170765891 ; 0000000289430482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1898039$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunimune, J. H.</creatorcontrib><creatorcontrib>Gatu Johnson, M.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Trosseille, C. A.</creatorcontrib><creatorcontrib>Johnson, T. M.</creatorcontrib><creatorcontrib>Berg, G. P. A.</creatorcontrib><creatorcontrib>Mackinnon, A. J.</creatorcontrib><creatorcontrib>Kilkenny, J. D.</creatorcontrib><creatorcontrib>Frenje, J. A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</creatorcontrib><title>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</title><title>Review of scientific instruments</title><description>The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10
17
. The PDDT will be used for optimal efficiency and resolution in phase 3.</description><subject>Deuterium</subject><subject>Microchannel plate detectors</subject><subject>Monte Carlo methods</subject><subject>Neutron spectra</subject><subject>OTHER INSTRUMENTATION</subject><subject>Plasma confinement</subject><subject>Pulse-dilation</subject><subject>Spectroscopy</subject><subject>Streak cameras</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjMuKwkAQRRtxwOj4D4UrXQQ6Ex_JWgy6ERfupempJCX9CN3FwCz8d2PwA7ybC5d7zkgkmSzKdLf9yccikTJfp9vdupiIaYx32WeTZYl4XFoV8Rc6oxzUPgC3CGQ7gxYdKybvwNfDymQxDRi9-SPXgFWNQyYNAbUnA7FDzcFbZAzQUy_kPAiUgVPjaHBVSpMh_ofl-VStvsVXrUzE-btnYlEdrvtj6iPTLWpi1K32zvXqW1aUhczL_KPTE8xGULE</recordid><startdate>20220816</startdate><enddate>20220816</enddate><creator>Kunimune, J. H.</creator><creator>Gatu Johnson, M.</creator><creator>Moore, A. S.</creator><creator>Trosseille, C. A.</creator><creator>Johnson, T. M.</creator><creator>Berg, G. P. A.</creator><creator>Mackinnon, A. J.</creator><creator>Kilkenny, J. D.</creator><creator>Frenje, J. A.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000243802906</orcidid><orcidid>https://orcid.org/0000000193032949</orcidid><orcidid>https://orcid.org/0000000223831275</orcidid><orcidid>https://orcid.org/0000000168460378</orcidid><orcidid>https://orcid.org/0000000221258882</orcidid><orcidid>https://orcid.org/0000000266476103</orcidid><orcidid>https://orcid.org/0000000170765891</orcidid><orcidid>https://orcid.org/0000000289430482</orcidid></search><sort><creationdate>20220816</creationdate><title>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</title><author>Kunimune, J. H. ; Gatu Johnson, M. ; Moore, A. S. ; Trosseille, C. A. ; Johnson, T. M. ; Berg, G. P. A. ; Mackinnon, A. J. ; Kilkenny, J. D. ; Frenje, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18980393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deuterium</topic><topic>Microchannel plate detectors</topic><topic>Monte Carlo methods</topic><topic>Neutron spectra</topic><topic>OTHER INSTRUMENTATION</topic><topic>Plasma confinement</topic><topic>Pulse-dilation</topic><topic>Spectroscopy</topic><topic>Streak cameras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunimune, J. H.</creatorcontrib><creatorcontrib>Gatu Johnson, M.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Trosseille, C. A.</creatorcontrib><creatorcontrib>Johnson, T. M.</creatorcontrib><creatorcontrib>Berg, G. P. A.</creatorcontrib><creatorcontrib>Mackinnon, A. J.</creatorcontrib><creatorcontrib>Kilkenny, J. D.</creatorcontrib><creatorcontrib>Frenje, J. A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunimune, J. H.</au><au>Gatu Johnson, M.</au><au>Moore, A. S.</au><au>Trosseille, C. A.</au><au>Johnson, T. M.</au><au>Berg, G. P. A.</au><au>Mackinnon, A. J.</au><au>Kilkenny, J. D.</au><au>Frenje, J. A.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</atitle><jtitle>Review of scientific instruments</jtitle><date>2022-08-16</date><risdate>2022</risdate><volume>93</volume><issue>8</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10
17
. The PDDT will be used for optimal efficiency and resolution in phase 3.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000243802906</orcidid><orcidid>https://orcid.org/0000000193032949</orcidid><orcidid>https://orcid.org/0000000223831275</orcidid><orcidid>https://orcid.org/0000000168460378</orcidid><orcidid>https://orcid.org/0000000221258882</orcidid><orcidid>https://orcid.org/0000000266476103</orcidid><orcidid>https://orcid.org/0000000170765891</orcidid><orcidid>https://orcid.org/0000000289430482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2022-08, Vol.93 (8) |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_1898039 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Deuterium Microchannel plate detectors Monte Carlo methods Neutron spectra OTHER INSTRUMENTATION Plasma confinement Pulse-dilation Spectroscopy Streak cameras |
title | Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phased%20plan%20for%20the%20implementation%20of%20the%20time-resolving%20magnetic%20recoil%20spectrometer%20on%20the%20National%20Ignition%20Facility%20(NIF)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kunimune,%20J.%20H.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States).%20Plasma%20Science%20and%20Fusion%20Center&rft.date=2022-08-16&rft.volume=93&rft.issue=8&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/&rft_dat=%3Costi%3E1898039%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |