Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)

The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2022-08, Vol.93 (8)
Hauptverfasser: Kunimune, J. H., Gatu Johnson, M., Moore, A. S., Trosseille, C. A., Johnson, T. M., Berg, G. P. A., Mackinnon, A. J., Kilkenny, J. D., Frenje, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Review of scientific instruments
container_volume 93
creator Kunimune, J. H.
Gatu Johnson, M.
Moore, A. S.
Trosseille, C. A.
Johnson, T. M.
Berg, G. P. A.
Mackinnon, A. J.
Kilkenny, J. D.
Frenje, J. A.
description The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10 17 . The PDDT will be used for optimal efficiency and resolution in phase 3.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1898039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898039</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18980393</originalsourceid><addsrcrecordid>eNqNjMuKwkAQRRtxwOj4D4UrXQQ6Ex_JWgy6ERfupempJCX9CN3FwCz8d2PwA7ybC5d7zkgkmSzKdLf9yccikTJfp9vdupiIaYx32WeTZYl4XFoV8Rc6oxzUPgC3CGQ7gxYdKybvwNfDymQxDRi9-SPXgFWNQyYNAbUnA7FDzcFbZAzQUy_kPAiUgVPjaHBVSpMh_ofl-VStvsVXrUzE-btnYlEdrvtj6iPTLWpi1K32zvXqW1aUhczL_KPTE8xGULE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kunimune, J. H. ; Gatu Johnson, M. ; Moore, A. S. ; Trosseille, C. A. ; Johnson, T. M. ; Berg, G. P. A. ; Mackinnon, A. J. ; Kilkenny, J. D. ; Frenje, J. A.</creator><creatorcontrib>Kunimune, J. H. ; Gatu Johnson, M. ; Moore, A. S. ; Trosseille, C. A. ; Johnson, T. M. ; Berg, G. P. A. ; Mackinnon, A. J. ; Kilkenny, J. D. ; Frenje, J. A. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</creatorcontrib><description>The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10 17 . The PDDT will be used for optimal efficiency and resolution in phase 3.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>Deuterium ; Microchannel plate detectors ; Monte Carlo methods ; Neutron spectra ; OTHER INSTRUMENTATION ; Plasma confinement ; Pulse-dilation ; Spectroscopy ; Streak cameras</subject><ispartof>Review of scientific instruments, 2022-08, Vol.93 (8)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000243802906 ; 0000000193032949 ; 0000000223831275 ; 0000000168460378 ; 0000000221258882 ; 0000000266476103 ; 0000000170765891 ; 0000000289430482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1898039$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunimune, J. H.</creatorcontrib><creatorcontrib>Gatu Johnson, M.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Trosseille, C. A.</creatorcontrib><creatorcontrib>Johnson, T. M.</creatorcontrib><creatorcontrib>Berg, G. P. A.</creatorcontrib><creatorcontrib>Mackinnon, A. J.</creatorcontrib><creatorcontrib>Kilkenny, J. D.</creatorcontrib><creatorcontrib>Frenje, J. A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</creatorcontrib><title>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</title><title>Review of scientific instruments</title><description>The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10 17 . The PDDT will be used for optimal efficiency and resolution in phase 3.</description><subject>Deuterium</subject><subject>Microchannel plate detectors</subject><subject>Monte Carlo methods</subject><subject>Neutron spectra</subject><subject>OTHER INSTRUMENTATION</subject><subject>Plasma confinement</subject><subject>Pulse-dilation</subject><subject>Spectroscopy</subject><subject>Streak cameras</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjMuKwkAQRRtxwOj4D4UrXQQ6Ex_JWgy6ERfupempJCX9CN3FwCz8d2PwA7ybC5d7zkgkmSzKdLf9yccikTJfp9vdupiIaYx32WeTZYl4XFoV8Rc6oxzUPgC3CGQ7gxYdKybvwNfDymQxDRi9-SPXgFWNQyYNAbUnA7FDzcFbZAzQUy_kPAiUgVPjaHBVSpMh_ofl-VStvsVXrUzE-btnYlEdrvtj6iPTLWpi1K32zvXqW1aUhczL_KPTE8xGULE</recordid><startdate>20220816</startdate><enddate>20220816</enddate><creator>Kunimune, J. H.</creator><creator>Gatu Johnson, M.</creator><creator>Moore, A. S.</creator><creator>Trosseille, C. A.</creator><creator>Johnson, T. M.</creator><creator>Berg, G. P. A.</creator><creator>Mackinnon, A. J.</creator><creator>Kilkenny, J. D.</creator><creator>Frenje, J. A.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000243802906</orcidid><orcidid>https://orcid.org/0000000193032949</orcidid><orcidid>https://orcid.org/0000000223831275</orcidid><orcidid>https://orcid.org/0000000168460378</orcidid><orcidid>https://orcid.org/0000000221258882</orcidid><orcidid>https://orcid.org/0000000266476103</orcidid><orcidid>https://orcid.org/0000000170765891</orcidid><orcidid>https://orcid.org/0000000289430482</orcidid></search><sort><creationdate>20220816</creationdate><title>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</title><author>Kunimune, J. H. ; Gatu Johnson, M. ; Moore, A. S. ; Trosseille, C. A. ; Johnson, T. M. ; Berg, G. P. A. ; Mackinnon, A. J. ; Kilkenny, J. D. ; Frenje, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18980393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deuterium</topic><topic>Microchannel plate detectors</topic><topic>Monte Carlo methods</topic><topic>Neutron spectra</topic><topic>OTHER INSTRUMENTATION</topic><topic>Plasma confinement</topic><topic>Pulse-dilation</topic><topic>Spectroscopy</topic><topic>Streak cameras</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunimune, J. H.</creatorcontrib><creatorcontrib>Gatu Johnson, M.</creatorcontrib><creatorcontrib>Moore, A. S.</creatorcontrib><creatorcontrib>Trosseille, C. A.</creatorcontrib><creatorcontrib>Johnson, T. M.</creatorcontrib><creatorcontrib>Berg, G. P. A.</creatorcontrib><creatorcontrib>Mackinnon, A. J.</creatorcontrib><creatorcontrib>Kilkenny, J. D.</creatorcontrib><creatorcontrib>Frenje, J. A.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunimune, J. H.</au><au>Gatu Johnson, M.</au><au>Moore, A. S.</au><au>Trosseille, C. A.</au><au>Johnson, T. M.</au><au>Berg, G. P. A.</au><au>Mackinnon, A. J.</au><au>Kilkenny, J. D.</au><au>Frenje, J. A.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)</atitle><jtitle>Review of scientific instruments</jtitle><date>2022-08-16</date><risdate>2022</risdate><volume>93</volume><issue>8</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>The time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons. A pulse-dilation drift tube (PDDT) subsequently dilates, un-skews, and detects the signal. While the foil and ion-optical system have been designed, the PDDT requires more development before it can be implemented. Therefore, a phased plan is presented that first uses the foil and ion-optical systems with detectors that can be implemented immediately—namely CR-39 and hDISC streak cameras. These detectors will allow the MRSt to be commissioned in an intermediate stage and begin collecting data on a reduced timescale, while the PDDT is developed in parallel. A CR-39 detector will be used in phase 1 for the measurement of the time-integrated neutron spectra with excellent energy-resolution, necessary for the energy calibration of the system. Streak cameras will be used in phase 2 for measurement of the time-resolved spectrum with limited spectral coverage, which is sufficient to diagnose the time-resolved ion temperature. Simulations are presented that predict the performance of the streak camera detector, indicating that it will achieve excellent burn history measurements at current yields, and good time-resolved ion-temperature measurements at yields above 3 × 10 17 . The PDDT will be used for optimal efficiency and resolution in phase 3.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000243802906</orcidid><orcidid>https://orcid.org/0000000193032949</orcidid><orcidid>https://orcid.org/0000000223831275</orcidid><orcidid>https://orcid.org/0000000168460378</orcidid><orcidid>https://orcid.org/0000000221258882</orcidid><orcidid>https://orcid.org/0000000266476103</orcidid><orcidid>https://orcid.org/0000000170765891</orcidid><orcidid>https://orcid.org/0000000289430482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2022-08, Vol.93 (8)
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_1898039
source AIP Journals Complete; Alma/SFX Local Collection
subjects Deuterium
Microchannel plate detectors
Monte Carlo methods
Neutron spectra
OTHER INSTRUMENTATION
Plasma confinement
Pulse-dilation
Spectroscopy
Streak cameras
title Phased plan for the implementation of the time-resolving magnetic recoil spectrometer on the National Ignition Facility (NIF)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phased%20plan%20for%20the%20implementation%20of%20the%20time-resolving%20magnetic%20recoil%20spectrometer%20on%20the%20National%20Ignition%20Facility%20(NIF)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kunimune,%20J.%20H.&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States).%20Plasma%20Science%20and%20Fusion%20Center&rft.date=2022-08-16&rft.volume=93&rft.issue=8&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/&rft_dat=%3Costi%3E1898039%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true