Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions

•Laser powder bed fusion (LPBF) is evaluated in terms of existing analytical models defining optimum processing parameters.•Power-velocity (PV) maps provide a rapid visualization of analytical models defining porosity defect regions in LPBF.•Analytical models based on melt pool geometries may be fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in solid state & materials science 2022-12, Vol.26 (6), p.101024, Article 101024
Hauptverfasser: Agrawal, Ankur K., Rankouhi, Behzad, Thoma, Dan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 101024
container_title Current opinion in solid state & materials science
container_volume 26
creator Agrawal, Ankur K.
Rankouhi, Behzad
Thoma, Dan J.
description •Laser powder bed fusion (LPBF) is evaluated in terms of existing analytical models defining optimum processing parameters.•Power-velocity (PV) maps provide a rapid visualization of analytical models defining porosity defect regions in LPBF.•Analytical models based on melt pool geometries may be further refined with in situ diagnostics of the melt pool.•Analytical and experimental examples are presented to demonstrate the predictive capability of the methodology.•The PV maps provide a basis for subsequent structure/property investigations nominally within the predicted boundaries. One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.
doi_str_mv 10.1016/j.cossms.2022.101024
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1895149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359028622000444</els_id><sourcerecordid>S1359028622000444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-b758fd2d27bbe535b086f4564ae1812ae9253960371ff433b0ff0df09fa7b3923</originalsourceid><addsrcrecordid>eNp9kMtOwzAURL0AiVL4AxYW-xa_k7BAqipeUiVYwNpynGtwlcaRnbb073EU1qxGupoZ3TkI3VCypISqu-3ShpR2ackIY-OJMHGGZpTLakFYqS7QZUpbQohQSs2QeY_QeDv4A-A-Bgsp4Z3pe999YRcibk2CiPtwbLLU0GC3Tz5093iFIxw8HHFwGH58GsaE6Ux7Grw1LU6h3Q_Zma7QuTNtgus_naPPp8eP9cti8_b8ul5tFlYIOSzqQpauYQ0r6hoklzUplRNSCQO0pMxAxSSvFOEFdU5wXhPnSONI5UxR84rxObqdekP-RSfrB7DfNnQd2EHTspJUVNkkJpONmVIEp_vodyaeNCV65Ke3euKnR3564pdjD1MM8oC8Oo790NmMLo71TfD_F_wCsQR-Rg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions</title><source>Elsevier ScienceDirect Journals</source><creator>Agrawal, Ankur K. ; Rankouhi, Behzad ; Thoma, Dan J.</creator><creatorcontrib>Agrawal, Ankur K. ; Rankouhi, Behzad ; Thoma, Dan J. ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>•Laser powder bed fusion (LPBF) is evaluated in terms of existing analytical models defining optimum processing parameters.•Power-velocity (PV) maps provide a rapid visualization of analytical models defining porosity defect regions in LPBF.•Analytical models based on melt pool geometries may be further refined with in situ diagnostics of the melt pool.•Analytical and experimental examples are presented to demonstrate the predictive capability of the methodology.•The PV maps provide a basis for subsequent structure/property investigations nominally within the predicted boundaries. One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.</description><identifier>ISSN: 1359-0286</identifier><identifier>DOI: 10.1016/j.cossms.2022.101024</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Additive manufacturing ; Analytical models ; Defects ; Laser powder bed fusion ; Laser-metal interaction ; MATERIALS SCIENCE ; Melt pool geometry ; Processing maps</subject><ispartof>Current opinion in solid state &amp; materials science, 2022-12, Vol.26 (6), p.101024, Article 101024</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-b758fd2d27bbe535b086f4564ae1812ae9253960371ff433b0ff0df09fa7b3923</citedby><cites>FETCH-LOGICAL-c445t-b758fd2d27bbe535b086f4564ae1812ae9253960371ff433b0ff0df09fa7b3923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359028622000444$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1895149$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Agrawal, Ankur K.</creatorcontrib><creatorcontrib>Rankouhi, Behzad</creatorcontrib><creatorcontrib>Thoma, Dan J.</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions</title><title>Current opinion in solid state &amp; materials science</title><description>•Laser powder bed fusion (LPBF) is evaluated in terms of existing analytical models defining optimum processing parameters.•Power-velocity (PV) maps provide a rapid visualization of analytical models defining porosity defect regions in LPBF.•Analytical models based on melt pool geometries may be further refined with in situ diagnostics of the melt pool.•Analytical and experimental examples are presented to demonstrate the predictive capability of the methodology.•The PV maps provide a basis for subsequent structure/property investigations nominally within the predicted boundaries. One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.</description><subject>Additive manufacturing</subject><subject>Analytical models</subject><subject>Defects</subject><subject>Laser powder bed fusion</subject><subject>Laser-metal interaction</subject><subject>MATERIALS SCIENCE</subject><subject>Melt pool geometry</subject><subject>Processing maps</subject><issn>1359-0286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURL0AiVL4AxYW-xa_k7BAqipeUiVYwNpynGtwlcaRnbb073EU1qxGupoZ3TkI3VCypISqu-3ShpR2ackIY-OJMHGGZpTLakFYqS7QZUpbQohQSs2QeY_QeDv4A-A-Bgsp4Z3pe999YRcibk2CiPtwbLLU0GC3Tz5093iFIxw8HHFwGH58GsaE6Ux7Grw1LU6h3Q_Zma7QuTNtgus_naPPp8eP9cti8_b8ul5tFlYIOSzqQpauYQ0r6hoklzUplRNSCQO0pMxAxSSvFOEFdU5wXhPnSONI5UxR84rxObqdekP-RSfrB7DfNnQd2EHTspJUVNkkJpONmVIEp_vodyaeNCV65Ke3euKnR3564pdjD1MM8oC8Oo790NmMLo71TfD_F_wCsQR-Rg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Agrawal, Ankur K.</creator><creator>Rankouhi, Behzad</creator><creator>Thoma, Dan J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20221201</creationdate><title>Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions</title><author>Agrawal, Ankur K. ; Rankouhi, Behzad ; Thoma, Dan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-b758fd2d27bbe535b086f4564ae1812ae9253960371ff433b0ff0df09fa7b3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Analytical models</topic><topic>Defects</topic><topic>Laser powder bed fusion</topic><topic>Laser-metal interaction</topic><topic>MATERIALS SCIENCE</topic><topic>Melt pool geometry</topic><topic>Processing maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Ankur K.</creatorcontrib><creatorcontrib>Rankouhi, Behzad</creatorcontrib><creatorcontrib>Thoma, Dan J.</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Current opinion in solid state &amp; materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agrawal, Ankur K.</au><au>Rankouhi, Behzad</au><au>Thoma, Dan J.</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions</atitle><jtitle>Current opinion in solid state &amp; materials science</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>6</issue><spage>101024</spage><pages>101024-</pages><artnum>101024</artnum><issn>1359-0286</issn><abstract>•Laser powder bed fusion (LPBF) is evaluated in terms of existing analytical models defining optimum processing parameters.•Power-velocity (PV) maps provide a rapid visualization of analytical models defining porosity defect regions in LPBF.•Analytical models based on melt pool geometries may be further refined with in situ diagnostics of the melt pool.•Analytical and experimental examples are presented to demonstrate the predictive capability of the methodology.•The PV maps provide a basis for subsequent structure/property investigations nominally within the predicted boundaries. One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cossms.2022.101024</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-0286
ispartof Current opinion in solid state & materials science, 2022-12, Vol.26 (6), p.101024, Article 101024
issn 1359-0286
language eng
recordid cdi_osti_scitechconnect_1895149
source Elsevier ScienceDirect Journals
subjects Additive manufacturing
Analytical models
Defects
Laser powder bed fusion
Laser-metal interaction
MATERIALS SCIENCE
Melt pool geometry
Processing maps
title Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20process%20mapping%20for%20laser%20powder%20bed%20fusion:%20A%20review%20of%20existing%20analytical%20solutions&rft.jtitle=Current%20opinion%20in%20solid%20state%20&%20materials%20science&rft.au=Agrawal,%20Ankur%20K.&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2022-12-01&rft.volume=26&rft.issue=6&rft.spage=101024&rft.pages=101024-&rft.artnum=101024&rft.issn=1359-0286&rft_id=info:doi/10.1016/j.cossms.2022.101024&rft_dat=%3Celsevier_osti_%3ES1359028622000444%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359028622000444&rfr_iscdi=true