Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact
This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2017-09, Vol.7 (5), p.1236-1243 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1243 |
---|---|
container_issue | 5 |
container_start_page | 1236 |
container_title | IEEE journal of photovoltaics |
container_volume | 7 |
creator | Rohatgi, Ajeet Rounsaville, Brian Young-Woo Ok Tam, Andrew M. Zimbardi, Francesco Upadhyaya, Ajay D. Yuguo Tao Madani, Keeya Richter, Armin Benick, Jan Hermle, Martin |
description | This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design. |
doi_str_mv | 10.1109/JPHOTOV.2017.2715720 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1893913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7970100</ieee_id><sourcerecordid>10_1109_JPHOTOV_2017_2715720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxRujiQT5BHrYeC_udLf_jtqASNCSUPXYLNMprNYt6RYjNz-6RdC5zEzy3pvJz3GugA8BeHwznU_SLH0ZehzCoReCH3r8xOl54AeukFyc_s0ignNnYO0b7yrgfhDInvM9VstGo2p1bZgyBXusC6q0WbG6ZBO9WrujstSoyeCOjZvatGy6Nfgrf3Kz3YbYQlcau3VRV6phCVWVZa-6XbNsawxVLP3SBbG5slZ_dne66DuF7yzpshS2F85ZqSpLg2PvO8_jUZZM3Fl6_5DczlwUUrZuERaCZMwFgZCRVEoQF6WvEABiQQGh56slLyIQsYxxSSEEYRQVUnmISoHoO9eH3Nq2OreoW8J197YhbHOIYhGD6ETyIMKmtrahMt80-kM1uxx4vqedH2nne9r5kXZnuzzYNBH9W8I45MC5-AGVNnyV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</title><source>IEEE Electronic Library (IEL)</source><creator>Rohatgi, Ajeet ; Rounsaville, Brian ; Young-Woo Ok ; Tam, Andrew M. ; Zimbardi, Francesco ; Upadhyaya, Ajay D. ; Yuguo Tao ; Madani, Keeya ; Richter, Armin ; Benick, Jan ; Hermle, Martin</creator><creatorcontrib>Rohatgi, Ajeet ; Rounsaville, Brian ; Young-Woo Ok ; Tam, Andrew M. ; Zimbardi, Francesco ; Upadhyaya, Ajay D. ; Yuguo Tao ; Madani, Keeya ; Richter, Armin ; Benick, Jan ; Hermle, Martin ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2017.2715720</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annealing ; Carrier selective contact ; Charge carrier processes ; Fabrication ; high efficiency n-type Si solar cell ; Junctions ; Passivation ; Photovoltaic cells ; selective B emitter ; Silicon ; SOLAR ENERGY ; tunnel oxide passivated contact</subject><ispartof>IEEE journal of photovoltaics, 2017-09, Vol.7 (5), p.1236-1243</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</citedby><cites>FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7970100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7970100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1893913$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Rounsaville, Brian</creatorcontrib><creatorcontrib>Young-Woo Ok</creatorcontrib><creatorcontrib>Tam, Andrew M.</creatorcontrib><creatorcontrib>Zimbardi, Francesco</creatorcontrib><creatorcontrib>Upadhyaya, Ajay D.</creatorcontrib><creatorcontrib>Yuguo Tao</creatorcontrib><creatorcontrib>Madani, Keeya</creatorcontrib><creatorcontrib>Richter, Armin</creatorcontrib><creatorcontrib>Benick, Jan</creatorcontrib><creatorcontrib>Hermle, Martin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.</description><subject>Annealing</subject><subject>Carrier selective contact</subject><subject>Charge carrier processes</subject><subject>Fabrication</subject><subject>high efficiency n-type Si solar cell</subject><subject>Junctions</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>selective B emitter</subject><subject>Silicon</subject><subject>SOLAR ENERGY</subject><subject>tunnel oxide passivated contact</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxRujiQT5BHrYeC_udLf_jtqASNCSUPXYLNMprNYt6RYjNz-6RdC5zEzy3pvJz3GugA8BeHwznU_SLH0ZehzCoReCH3r8xOl54AeukFyc_s0ignNnYO0b7yrgfhDInvM9VstGo2p1bZgyBXusC6q0WbG6ZBO9WrujstSoyeCOjZvatGy6Nfgrf3Kz3YbYQlcau3VRV6phCVWVZa-6XbNsawxVLP3SBbG5slZ_dne66DuF7yzpshS2F85ZqSpLg2PvO8_jUZZM3Fl6_5DczlwUUrZuERaCZMwFgZCRVEoQF6WvEABiQQGh56slLyIQsYxxSSEEYRQVUnmISoHoO9eH3Nq2OreoW8J197YhbHOIYhGD6ETyIMKmtrahMt80-kM1uxx4vqedH2nne9r5kXZnuzzYNBH9W8I45MC5-AGVNnyV</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Rohatgi, Ajeet</creator><creator>Rounsaville, Brian</creator><creator>Young-Woo Ok</creator><creator>Tam, Andrew M.</creator><creator>Zimbardi, Francesco</creator><creator>Upadhyaya, Ajay D.</creator><creator>Yuguo Tao</creator><creator>Madani, Keeya</creator><creator>Richter, Armin</creator><creator>Benick, Jan</creator><creator>Hermle, Martin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170901</creationdate><title>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</title><author>Rohatgi, Ajeet ; Rounsaville, Brian ; Young-Woo Ok ; Tam, Andrew M. ; Zimbardi, Francesco ; Upadhyaya, Ajay D. ; Yuguo Tao ; Madani, Keeya ; Richter, Armin ; Benick, Jan ; Hermle, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Carrier selective contact</topic><topic>Charge carrier processes</topic><topic>Fabrication</topic><topic>high efficiency n-type Si solar cell</topic><topic>Junctions</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>selective B emitter</topic><topic>Silicon</topic><topic>SOLAR ENERGY</topic><topic>tunnel oxide passivated contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Rounsaville, Brian</creatorcontrib><creatorcontrib>Young-Woo Ok</creatorcontrib><creatorcontrib>Tam, Andrew M.</creatorcontrib><creatorcontrib>Zimbardi, Francesco</creatorcontrib><creatorcontrib>Upadhyaya, Ajay D.</creatorcontrib><creatorcontrib>Yuguo Tao</creatorcontrib><creatorcontrib>Madani, Keeya</creatorcontrib><creatorcontrib>Richter, Armin</creatorcontrib><creatorcontrib>Benick, Jan</creatorcontrib><creatorcontrib>Hermle, Martin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rohatgi, Ajeet</au><au>Rounsaville, Brian</au><au>Young-Woo Ok</au><au>Tam, Andrew M.</au><au>Zimbardi, Francesco</au><au>Upadhyaya, Ajay D.</au><au>Yuguo Tao</au><au>Madani, Keeya</au><au>Richter, Armin</au><au>Benick, Jan</au><au>Hermle, Martin</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>7</volume><issue>5</issue><spage>1236</spage><epage>1243</epage><pages>1236-1243</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2017.2715720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2017-09, Vol.7 (5), p.1236-1243 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_osti_scitechconnect_1893913 |
source | IEEE Electronic Library (IEL) |
subjects | Annealing Carrier selective contact Charge carrier processes Fabrication high efficiency n-type Si solar cell Junctions Passivation Photovoltaic cells selective B emitter Silicon SOLAR ENERGY tunnel oxide passivated contact |
title | Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Modeling%20of%20High-Efficiency%20Front%20Junction%20N-Type%20Silicon%20Solar%20Cells%20With%20Tunnel%20Oxide%20Passivating%20Back%20Contact&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Rohatgi,%20Ajeet&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2017-09-01&rft.volume=7&rft.issue=5&rft.spage=1236&rft.epage=1243&rft.pages=1236-1243&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2017.2715720&rft_dat=%3Ccrossref_RIE%3E10_1109_JPHOTOV_2017_2715720%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7970100&rfr_iscdi=true |