Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact

This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2017-09, Vol.7 (5), p.1236-1243
Hauptverfasser: Rohatgi, Ajeet, Rounsaville, Brian, Young-Woo Ok, Tam, Andrew M., Zimbardi, Francesco, Upadhyaya, Ajay D., Yuguo Tao, Madani, Keeya, Richter, Armin, Benick, Jan, Hermle, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1243
container_issue 5
container_start_page 1236
container_title IEEE journal of photovoltaics
container_volume 7
creator Rohatgi, Ajeet
Rounsaville, Brian
Young-Woo Ok
Tam, Andrew M.
Zimbardi, Francesco
Upadhyaya, Ajay D.
Yuguo Tao
Madani, Keeya
Richter, Armin
Benick, Jan
Hermle, Martin
description This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.
doi_str_mv 10.1109/JPHOTOV.2017.2715720
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1893913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7970100</ieee_id><sourcerecordid>10_1109_JPHOTOV_2017_2715720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxRujiQT5BHrYeC_udLf_jtqASNCSUPXYLNMprNYt6RYjNz-6RdC5zEzy3pvJz3GugA8BeHwznU_SLH0ZehzCoReCH3r8xOl54AeukFyc_s0ignNnYO0b7yrgfhDInvM9VstGo2p1bZgyBXusC6q0WbG6ZBO9WrujstSoyeCOjZvatGy6Nfgrf3Kz3YbYQlcau3VRV6phCVWVZa-6XbNsawxVLP3SBbG5slZ_dne66DuF7yzpshS2F85ZqSpLg2PvO8_jUZZM3Fl6_5DczlwUUrZuERaCZMwFgZCRVEoQF6WvEABiQQGh56slLyIQsYxxSSEEYRQVUnmISoHoO9eH3Nq2OreoW8J197YhbHOIYhGD6ETyIMKmtrahMt80-kM1uxx4vqedH2nne9r5kXZnuzzYNBH9W8I45MC5-AGVNnyV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</title><source>IEEE Electronic Library (IEL)</source><creator>Rohatgi, Ajeet ; Rounsaville, Brian ; Young-Woo Ok ; Tam, Andrew M. ; Zimbardi, Francesco ; Upadhyaya, Ajay D. ; Yuguo Tao ; Madani, Keeya ; Richter, Armin ; Benick, Jan ; Hermle, Martin</creator><creatorcontrib>Rohatgi, Ajeet ; Rounsaville, Brian ; Young-Woo Ok ; Tam, Andrew M. ; Zimbardi, Francesco ; Upadhyaya, Ajay D. ; Yuguo Tao ; Madani, Keeya ; Richter, Armin ; Benick, Jan ; Hermle, Martin ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2017.2715720</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annealing ; Carrier selective contact ; Charge carrier processes ; Fabrication ; high efficiency n-type Si solar cell ; Junctions ; Passivation ; Photovoltaic cells ; selective B emitter ; Silicon ; SOLAR ENERGY ; tunnel oxide passivated contact</subject><ispartof>IEEE journal of photovoltaics, 2017-09, Vol.7 (5), p.1236-1243</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</citedby><cites>FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7970100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7970100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1893913$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Rounsaville, Brian</creatorcontrib><creatorcontrib>Young-Woo Ok</creatorcontrib><creatorcontrib>Tam, Andrew M.</creatorcontrib><creatorcontrib>Zimbardi, Francesco</creatorcontrib><creatorcontrib>Upadhyaya, Ajay D.</creatorcontrib><creatorcontrib>Yuguo Tao</creatorcontrib><creatorcontrib>Madani, Keeya</creatorcontrib><creatorcontrib>Richter, Armin</creatorcontrib><creatorcontrib>Benick, Jan</creatorcontrib><creatorcontrib>Hermle, Martin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.</description><subject>Annealing</subject><subject>Carrier selective contact</subject><subject>Charge carrier processes</subject><subject>Fabrication</subject><subject>high efficiency n-type Si solar cell</subject><subject>Junctions</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>selective B emitter</subject><subject>Silicon</subject><subject>SOLAR ENERGY</subject><subject>tunnel oxide passivated contact</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxRujiQT5BHrYeC_udLf_jtqASNCSUPXYLNMprNYt6RYjNz-6RdC5zEzy3pvJz3GugA8BeHwznU_SLH0ZehzCoReCH3r8xOl54AeukFyc_s0ignNnYO0b7yrgfhDInvM9VstGo2p1bZgyBXusC6q0WbG6ZBO9WrujstSoyeCOjZvatGy6Nfgrf3Kz3YbYQlcau3VRV6phCVWVZa-6XbNsawxVLP3SBbG5slZ_dne66DuF7yzpshS2F85ZqSpLg2PvO8_jUZZM3Fl6_5DczlwUUrZuERaCZMwFgZCRVEoQF6WvEABiQQGh56slLyIQsYxxSSEEYRQVUnmISoHoO9eH3Nq2OreoW8J197YhbHOIYhGD6ETyIMKmtrahMt80-kM1uxx4vqedH2nne9r5kXZnuzzYNBH9W8I45MC5-AGVNnyV</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Rohatgi, Ajeet</creator><creator>Rounsaville, Brian</creator><creator>Young-Woo Ok</creator><creator>Tam, Andrew M.</creator><creator>Zimbardi, Francesco</creator><creator>Upadhyaya, Ajay D.</creator><creator>Yuguo Tao</creator><creator>Madani, Keeya</creator><creator>Richter, Armin</creator><creator>Benick, Jan</creator><creator>Hermle, Martin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170901</creationdate><title>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</title><author>Rohatgi, Ajeet ; Rounsaville, Brian ; Young-Woo Ok ; Tam, Andrew M. ; Zimbardi, Francesco ; Upadhyaya, Ajay D. ; Yuguo Tao ; Madani, Keeya ; Richter, Armin ; Benick, Jan ; Hermle, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-d7d3e4903e13484aa3e03f5ac11193e6ec25ab0d813949cbe716788d4a2ccaa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Carrier selective contact</topic><topic>Charge carrier processes</topic><topic>Fabrication</topic><topic>high efficiency n-type Si solar cell</topic><topic>Junctions</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>selective B emitter</topic><topic>Silicon</topic><topic>SOLAR ENERGY</topic><topic>tunnel oxide passivated contact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohatgi, Ajeet</creatorcontrib><creatorcontrib>Rounsaville, Brian</creatorcontrib><creatorcontrib>Young-Woo Ok</creatorcontrib><creatorcontrib>Tam, Andrew M.</creatorcontrib><creatorcontrib>Zimbardi, Francesco</creatorcontrib><creatorcontrib>Upadhyaya, Ajay D.</creatorcontrib><creatorcontrib>Yuguo Tao</creatorcontrib><creatorcontrib>Madani, Keeya</creatorcontrib><creatorcontrib>Richter, Armin</creatorcontrib><creatorcontrib>Benick, Jan</creatorcontrib><creatorcontrib>Hermle, Martin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rohatgi, Ajeet</au><au>Rounsaville, Brian</au><au>Young-Woo Ok</au><au>Tam, Andrew M.</au><au>Zimbardi, Francesco</au><au>Upadhyaya, Ajay D.</au><au>Yuguo Tao</au><au>Madani, Keeya</au><au>Richter, Armin</au><au>Benick, Jan</au><au>Hermle, Martin</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>7</volume><issue>5</issue><spage>1236</spage><epage>1243</epage><pages>1236-1243</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>This paper reports on in-depth understanding, modeling, and fabrication of 23.8% efficient 4 cm 2 n-type Float Zone (FZ) silicon cells with a selective boron emitter and photolithography contact on front and tunnel oxide passivating contact on the back. Tunnel oxide passivating contact composed of a very thin chemically grown silicon oxide (~15 Å) capped with plasma-enhanced chemical vapor deposition (PECVD) grown 20 nm n + poly Si gave excellent surface passivation and carrier selectivity with very low saturation current density (~5 fA/cm 2 ). A high-quality boron selective emitter was formed using ion implantation and solid source diffusion to minimize metal recombination and emitter saturation current density. Process optimization resulted in a cell V oc of 712 mV, J sc of 41.2 mA/cm 2 , and FF of 0.811. A simple methodology is used to model these cells which replaces tunnel oxide passivating contact region by electron and hole recombination velocities extracted from measured saturation current density of tunnel oxide passivating contact region and analysis. Using this approach and two-dimensional device modeling gave an excellent match between the measured and simulated cell parameters and efficiency, supporting excellent passivation and carrier selectivity of these contacts. Extended simulations showed that 26% cell efficiency can be achieved with this cell structure by further optimization of wafer quality, emitter profile, and contact design.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2017.2715720</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2017-09, Vol.7 (5), p.1236-1243
issn 2156-3381
2156-3403
language eng
recordid cdi_osti_scitechconnect_1893913
source IEEE Electronic Library (IEL)
subjects Annealing
Carrier selective contact
Charge carrier processes
Fabrication
high efficiency n-type Si solar cell
Junctions
Passivation
Photovoltaic cells
selective B emitter
Silicon
SOLAR ENERGY
tunnel oxide passivated contact
title Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Modeling%20of%20High-Efficiency%20Front%20Junction%20N-Type%20Silicon%20Solar%20Cells%20With%20Tunnel%20Oxide%20Passivating%20Back%20Contact&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Rohatgi,%20Ajeet&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2017-09-01&rft.volume=7&rft.issue=5&rft.spage=1236&rft.epage=1243&rft.pages=1236-1243&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2017.2715720&rft_dat=%3Ccrossref_RIE%3E10_1109_JPHOTOV_2017_2715720%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7970100&rfr_iscdi=true