A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures

Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While effor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2022-10, Vol.34 (1)
Hauptverfasser: Mao, Yuwei, Lin, Hui, Yu, Christina Xuan, Frye, Roger, Beckett, Darren, Anderson, Kevin, Jacquemetton, Lars, Carter, Fred, Gao, Zhangyuan, Liao, Wei-keng, Choudhary, Alok N., Ehmann, Kornel, Agrawal, Ankit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of intelligent manufacturing
container_volume 34
creator Mao, Yuwei
Lin, Hui
Yu, Christina Xuan
Frye, Roger
Beckett, Darren
Anderson, Kevin
Jacquemetton, Lars
Carter, Fred
Gao, Zhangyuan
Liao, Wei-keng
Choudhary, Alok N.
Ehmann, Kornel
Agrawal, Ankit
description Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1893180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893180</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18931803</originalsourceid><addsrcrecordid>eNqNzM0KgkAUBeBZFGQ_73BpL4yIosuIogdoH9N41Vs6I_eOiG-fQQ_Q5pzFdzgrFekyy-MsS7KN2oq8tNZlkSeRGk5QIQ7QoWFHroGaTY-T5zfUnqEzM3I8kSAMnr1QmGFgrMgG8g7IQY_BdAtOFTI8sYJ6lC8tubyFFrlfXKhxJoyMslfr2nSCh1_v1PF6uZ9vsZdAD7EU0LbWO4c2PJKiTJNCp3-NPjc0Sys</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</title><source>Springer Nature - Complete Springer Journals</source><creator>Mao, Yuwei ; Lin, Hui ; Yu, Christina Xuan ; Frye, Roger ; Beckett, Darren ; Anderson, Kevin ; Jacquemetton, Lars ; Carter, Fred ; Gao, Zhangyuan ; Liao, Wei-keng ; Choudhary, Alok N. ; Ehmann, Kornel ; Agrawal, Ankit</creator><creatorcontrib>Mao, Yuwei ; Lin, Hui ; Yu, Christina Xuan ; Frye, Roger ; Beckett, Darren ; Anderson, Kevin ; Jacquemetton, Lars ; Carter, Fred ; Gao, Zhangyuan ; Liao, Wei-keng ; Choudhary, Alok N. ; Ehmann, Kornel ; Agrawal, Ankit ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.</description><identifier>ISSN: 0956-5515</identifier><language>eng</language><publisher>United States: Springer Nature</publisher><subject>Computer Science ; ENGINEERING</subject><ispartof>Journal of intelligent manufacturing, 2022-10, Vol.34 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000324381998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1893180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Yuwei</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Yu, Christina Xuan</creatorcontrib><creatorcontrib>Frye, Roger</creatorcontrib><creatorcontrib>Beckett, Darren</creatorcontrib><creatorcontrib>Anderson, Kevin</creatorcontrib><creatorcontrib>Jacquemetton, Lars</creatorcontrib><creatorcontrib>Carter, Fred</creatorcontrib><creatorcontrib>Gao, Zhangyuan</creatorcontrib><creatorcontrib>Liao, Wei-keng</creatorcontrib><creatorcontrib>Choudhary, Alok N.</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Agrawal, Ankit</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</title><title>Journal of intelligent manufacturing</title><description>Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.</description><subject>Computer Science</subject><subject>ENGINEERING</subject><issn>0956-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNzM0KgkAUBeBZFGQ_73BpL4yIosuIogdoH9N41Vs6I_eOiG-fQQ_Q5pzFdzgrFekyy-MsS7KN2oq8tNZlkSeRGk5QIQ7QoWFHroGaTY-T5zfUnqEzM3I8kSAMnr1QmGFgrMgG8g7IQY_BdAtOFTI8sYJ6lC8tubyFFrlfXKhxJoyMslfr2nSCh1_v1PF6uZ9vsZdAD7EU0LbWO4c2PJKiTJNCp3-NPjc0Sys</recordid><startdate>20221014</startdate><enddate>20221014</enddate><creator>Mao, Yuwei</creator><creator>Lin, Hui</creator><creator>Yu, Christina Xuan</creator><creator>Frye, Roger</creator><creator>Beckett, Darren</creator><creator>Anderson, Kevin</creator><creator>Jacquemetton, Lars</creator><creator>Carter, Fred</creator><creator>Gao, Zhangyuan</creator><creator>Liao, Wei-keng</creator><creator>Choudhary, Alok N.</creator><creator>Ehmann, Kornel</creator><creator>Agrawal, Ankit</creator><general>Springer Nature</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000324381998</orcidid></search><sort><creationdate>20221014</creationdate><title>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</title><author>Mao, Yuwei ; Lin, Hui ; Yu, Christina Xuan ; Frye, Roger ; Beckett, Darren ; Anderson, Kevin ; Jacquemetton, Lars ; Carter, Fred ; Gao, Zhangyuan ; Liao, Wei-keng ; Choudhary, Alok N. ; Ehmann, Kornel ; Agrawal, Ankit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18931803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>ENGINEERING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Yuwei</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Yu, Christina Xuan</creatorcontrib><creatorcontrib>Frye, Roger</creatorcontrib><creatorcontrib>Beckett, Darren</creatorcontrib><creatorcontrib>Anderson, Kevin</creatorcontrib><creatorcontrib>Jacquemetton, Lars</creatorcontrib><creatorcontrib>Carter, Fred</creatorcontrib><creatorcontrib>Gao, Zhangyuan</creatorcontrib><creatorcontrib>Liao, Wei-keng</creatorcontrib><creatorcontrib>Choudhary, Alok N.</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Agrawal, Ankit</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Yuwei</au><au>Lin, Hui</au><au>Yu, Christina Xuan</au><au>Frye, Roger</au><au>Beckett, Darren</au><au>Anderson, Kevin</au><au>Jacquemetton, Lars</au><au>Carter, Fred</au><au>Gao, Zhangyuan</au><au>Liao, Wei-keng</au><au>Choudhary, Alok N.</au><au>Ehmann, Kornel</au><au>Agrawal, Ankit</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</atitle><jtitle>Journal of intelligent manufacturing</jtitle><date>2022-10-14</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><issn>0956-5515</issn><abstract>Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.</abstract><cop>United States</cop><pub>Springer Nature</pub><orcidid>https://orcid.org/0000000324381998</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2022-10, Vol.34 (1)
issn 0956-5515
language eng
recordid cdi_osti_scitechconnect_1893180
source Springer Nature - Complete Springer Journals
subjects Computer Science
ENGINEERING
title A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20framework%20for%20layer-wise%20porosity%20prediction%20in%20metal%20powder%20bed%20fusion%20using%20thermal%20signatures&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Mao,%20Yuwei&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2022-10-14&rft.volume=34&rft.issue=1&rft.issn=0956-5515&rft_id=info:doi/&rft_dat=%3Costi%3E1893180%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true