A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures
Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While effor...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2022-10, Vol.34 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of intelligent manufacturing |
container_volume | 34 |
creator | Mao, Yuwei Lin, Hui Yu, Christina Xuan Frye, Roger Beckett, Darren Anderson, Kevin Jacquemetton, Lars Carter, Fred Gao, Zhangyuan Liao, Wei-keng Choudhary, Alok N. Ehmann, Kornel Agrawal, Ankit |
description | Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1893180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893180</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18931803</originalsourceid><addsrcrecordid>eNqNzM0KgkAUBeBZFGQ_73BpL4yIosuIogdoH9N41Vs6I_eOiG-fQQ_Q5pzFdzgrFekyy-MsS7KN2oq8tNZlkSeRGk5QIQ7QoWFHroGaTY-T5zfUnqEzM3I8kSAMnr1QmGFgrMgG8g7IQY_BdAtOFTI8sYJ6lC8tubyFFrlfXKhxJoyMslfr2nSCh1_v1PF6uZ9vsZdAD7EU0LbWO4c2PJKiTJNCp3-NPjc0Sys</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</title><source>Springer Nature - Complete Springer Journals</source><creator>Mao, Yuwei ; Lin, Hui ; Yu, Christina Xuan ; Frye, Roger ; Beckett, Darren ; Anderson, Kevin ; Jacquemetton, Lars ; Carter, Fred ; Gao, Zhangyuan ; Liao, Wei-keng ; Choudhary, Alok N. ; Ehmann, Kornel ; Agrawal, Ankit</creator><creatorcontrib>Mao, Yuwei ; Lin, Hui ; Yu, Christina Xuan ; Frye, Roger ; Beckett, Darren ; Anderson, Kevin ; Jacquemetton, Lars ; Carter, Fred ; Gao, Zhangyuan ; Liao, Wei-keng ; Choudhary, Alok N. ; Ehmann, Kornel ; Agrawal, Ankit ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.</description><identifier>ISSN: 0956-5515</identifier><language>eng</language><publisher>United States: Springer Nature</publisher><subject>Computer Science ; ENGINEERING</subject><ispartof>Journal of intelligent manufacturing, 2022-10, Vol.34 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000324381998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1893180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Yuwei</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Yu, Christina Xuan</creatorcontrib><creatorcontrib>Frye, Roger</creatorcontrib><creatorcontrib>Beckett, Darren</creatorcontrib><creatorcontrib>Anderson, Kevin</creatorcontrib><creatorcontrib>Jacquemetton, Lars</creatorcontrib><creatorcontrib>Carter, Fred</creatorcontrib><creatorcontrib>Gao, Zhangyuan</creatorcontrib><creatorcontrib>Liao, Wei-keng</creatorcontrib><creatorcontrib>Choudhary, Alok N.</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Agrawal, Ankit</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</title><title>Journal of intelligent manufacturing</title><description>Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.</description><subject>Computer Science</subject><subject>ENGINEERING</subject><issn>0956-5515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNzM0KgkAUBeBZFGQ_73BpL4yIosuIogdoH9N41Vs6I_eOiG-fQQ_Q5pzFdzgrFekyy-MsS7KN2oq8tNZlkSeRGk5QIQ7QoWFHroGaTY-T5zfUnqEzM3I8kSAMnr1QmGFgrMgG8g7IQY_BdAtOFTI8sYJ6lC8tubyFFrlfXKhxJoyMslfr2nSCh1_v1PF6uZ9vsZdAD7EU0LbWO4c2PJKiTJNCp3-NPjc0Sys</recordid><startdate>20221014</startdate><enddate>20221014</enddate><creator>Mao, Yuwei</creator><creator>Lin, Hui</creator><creator>Yu, Christina Xuan</creator><creator>Frye, Roger</creator><creator>Beckett, Darren</creator><creator>Anderson, Kevin</creator><creator>Jacquemetton, Lars</creator><creator>Carter, Fred</creator><creator>Gao, Zhangyuan</creator><creator>Liao, Wei-keng</creator><creator>Choudhary, Alok N.</creator><creator>Ehmann, Kornel</creator><creator>Agrawal, Ankit</creator><general>Springer Nature</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000324381998</orcidid></search><sort><creationdate>20221014</creationdate><title>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</title><author>Mao, Yuwei ; Lin, Hui ; Yu, Christina Xuan ; Frye, Roger ; Beckett, Darren ; Anderson, Kevin ; Jacquemetton, Lars ; Carter, Fred ; Gao, Zhangyuan ; Liao, Wei-keng ; Choudhary, Alok N. ; Ehmann, Kornel ; Agrawal, Ankit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18931803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Science</topic><topic>ENGINEERING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Yuwei</creatorcontrib><creatorcontrib>Lin, Hui</creatorcontrib><creatorcontrib>Yu, Christina Xuan</creatorcontrib><creatorcontrib>Frye, Roger</creatorcontrib><creatorcontrib>Beckett, Darren</creatorcontrib><creatorcontrib>Anderson, Kevin</creatorcontrib><creatorcontrib>Jacquemetton, Lars</creatorcontrib><creatorcontrib>Carter, Fred</creatorcontrib><creatorcontrib>Gao, Zhangyuan</creatorcontrib><creatorcontrib>Liao, Wei-keng</creatorcontrib><creatorcontrib>Choudhary, Alok N.</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Agrawal, Ankit</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Yuwei</au><au>Lin, Hui</au><au>Yu, Christina Xuan</au><au>Frye, Roger</au><au>Beckett, Darren</au><au>Anderson, Kevin</au><au>Jacquemetton, Lars</au><au>Carter, Fred</au><au>Gao, Zhangyuan</au><au>Liao, Wei-keng</au><au>Choudhary, Alok N.</au><au>Ehmann, Kornel</au><au>Agrawal, Ankit</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures</atitle><jtitle>Journal of intelligent manufacturing</jtitle><date>2022-10-14</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><issn>0956-5515</issn><abstract>Part quality manufactured by the laser powder bed fusion process is significantly affected by porosity. Existing works of process–property relationships for porosity prediction require many experiments or computationally expensive simulations without considering environmental variations. While efforts that adopt real-time monitoring sensors can only detect porosity after its occurrence rather than predicting it ahead of time. In this study, a novel porosity detection-prediction framework is proposed based on deep learning that predicts porosity in the next layer based on thermal signatures of the previous layers. The proposed framework is validated in terms of its ability to accurately predict lack of fusion porosity using computerized tomography (CT) scans, which achieves a F1-score of 0.75. The framework presented in this work can be effectively applied to quality control in additive manufacturing. As a function of the predicted porosity positions, laser process parameters in the next layer can be adjusted to avoid more part porosity in the future or the existing porosity could be filled. If the predicted part porosity is not acceptable regardless of laser parameters, the building process can be stopped to minimize the loss.</abstract><cop>United States</cop><pub>Springer Nature</pub><orcidid>https://orcid.org/0000000324381998</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2022-10, Vol.34 (1) |
issn | 0956-5515 |
language | eng |
recordid | cdi_osti_scitechconnect_1893180 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Science ENGINEERING |
title | A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20framework%20for%20layer-wise%20porosity%20prediction%20in%20metal%20powder%20bed%20fusion%20using%20thermal%20signatures&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Mao,%20Yuwei&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2022-10-14&rft.volume=34&rft.issue=1&rft.issn=0956-5515&rft_id=info:doi/&rft_dat=%3Costi%3E1893180%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |