Linear stability analysis via simulated annealing and accelerated relaxation
Simulated annealing (SA) is a kind of relaxation method for finding equilibria of Hamiltonian systems. A set of evolution equations is solved with SA, which is derived from the original Hamiltonian system so that the energy of the system changes monotonically while preserving Casimir invariants inhe...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-10, Vol.29 (10) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Furukawa, M. Morrison, P. J. |
description | Simulated annealing (SA) is a kind of relaxation method for finding equilibria of Hamiltonian systems. A set of evolution equations is solved with SA, which is derived from the original Hamiltonian system so that the energy of the system changes monotonically while preserving Casimir invariants inherent to noncanonical Hamiltonian systems. The energy extremum reached by SA is an equilibrium. Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. The procedure of the stability analysis is explained, and some examples are shown. Because the time evolution is computationally time consuming, efficient relaxation is necessary for SA to be practically useful. An acceleration method is developed by introducing time dependence in the symmetric kernel used in the double bracket, which is part of the SA formulation described here. An explicit formulation for low-beta reduced magnetohydrodynamics (MHD) in cylindrical geometry is presented. Since SA for low-beta reduced MHD has two advection fields that relax, it is important to balance the orders of magnitude of these advection fields. |
doi_str_mv | 10.1063/5.0101095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1891581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723252979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-1f56b1d338061d6f3e6e914db5758679ac700edcb339dd83454691f360d48bf73</originalsourceid><addsrcrecordid>eNqd0EtLAzEQAOAgCtbqwX-w6Elha7J5H6X4ggUvCt5CNslqyna3Jmmx_960W_AuOWQm-UhmBoBLBGcIMnxHZxDlJekRmCAoZMkZJ8e7mMOSMfJxCs5iXEAICaNiAura906HIibd-M6nbaF73W2jj8XG6yL65brTydl8nF3n-88c5cwY17mwvwmu0z86-aE_Byet7qK7OOxT8P748DZ_LuvXp5f5fV0aQmkqUUtZgyzGAjJkWYsdcxIR21BOBeNSGw6hs6bBWForMKGESdRiBi0RTcvxFFyN7w4xeRWNT858mSFXaJJCQiIqUEbXI1qF4XvtYlKLYR1yc1FVvMIVrSSXWd2MyoQhxuBatQp-qcNWIah2E1VUHSaa7e1odz_uG_4f3gzhD6qVbfEvAO6DWQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723252979</pqid></control><display><type>article</type><title>Linear stability analysis via simulated annealing and accelerated relaxation</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Furukawa, M. ; Morrison, P. J.</creator><creatorcontrib>Furukawa, M. ; Morrison, P. J.</creatorcontrib><description>Simulated annealing (SA) is a kind of relaxation method for finding equilibria of Hamiltonian systems. A set of evolution equations is solved with SA, which is derived from the original Hamiltonian system so that the energy of the system changes monotonically while preserving Casimir invariants inherent to noncanonical Hamiltonian systems. The energy extremum reached by SA is an equilibrium. Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. The procedure of the stability analysis is explained, and some examples are shown. Because the time evolution is computationally time consuming, efficient relaxation is necessary for SA to be practically useful. An acceleration method is developed by introducing time dependence in the symmetric kernel used in the double bracket, which is part of the SA formulation described here. An explicit formulation for low-beta reduced magnetohydrodynamics (MHD) in cylindrical geometry is presented. Since SA for low-beta reduced MHD has two advection fields that relax, it is important to balance the orders of magnitude of these advection fields.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0101095</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Advection ; Evolution ; Hamiltonian functions ; Magnetohydrodynamics ; Perturbation ; Plasma physics ; Relaxation method (mathematics) ; Simulated annealing ; Stability analysis ; Time dependence</subject><ispartof>Physics of plasmas, 2022-10, Vol.29 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-1f56b1d338061d6f3e6e914db5758679ac700edcb339dd83454691f360d48bf73</citedby><cites>FETCH-LOGICAL-c455t-1f56b1d338061d6f3e6e914db5758679ac700edcb339dd83454691f360d48bf73</cites><orcidid>0000-0003-1587-5072 ; 0000-0002-8256-9596 ; 0000000315875072 ; 0000000282569596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0101095$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1891581$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Furukawa, M.</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><title>Linear stability analysis via simulated annealing and accelerated relaxation</title><title>Physics of plasmas</title><description>Simulated annealing (SA) is a kind of relaxation method for finding equilibria of Hamiltonian systems. A set of evolution equations is solved with SA, which is derived from the original Hamiltonian system so that the energy of the system changes monotonically while preserving Casimir invariants inherent to noncanonical Hamiltonian systems. The energy extremum reached by SA is an equilibrium. Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. The procedure of the stability analysis is explained, and some examples are shown. Because the time evolution is computationally time consuming, efficient relaxation is necessary for SA to be practically useful. An acceleration method is developed by introducing time dependence in the symmetric kernel used in the double bracket, which is part of the SA formulation described here. An explicit formulation for low-beta reduced magnetohydrodynamics (MHD) in cylindrical geometry is presented. Since SA for low-beta reduced MHD has two advection fields that relax, it is important to balance the orders of magnitude of these advection fields.</description><subject>Advection</subject><subject>Evolution</subject><subject>Hamiltonian functions</subject><subject>Magnetohydrodynamics</subject><subject>Perturbation</subject><subject>Plasma physics</subject><subject>Relaxation method (mathematics)</subject><subject>Simulated annealing</subject><subject>Stability analysis</subject><subject>Time dependence</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQAOAgCtbqwX-w6Elha7J5H6X4ggUvCt5CNslqyna3Jmmx_960W_AuOWQm-UhmBoBLBGcIMnxHZxDlJekRmCAoZMkZJ8e7mMOSMfJxCs5iXEAICaNiAura906HIibd-M6nbaF73W2jj8XG6yL65brTydl8nF3n-88c5cwY17mwvwmu0z86-aE_Byet7qK7OOxT8P748DZ_LuvXp5f5fV0aQmkqUUtZgyzGAjJkWYsdcxIR21BOBeNSGw6hs6bBWForMKGESdRiBi0RTcvxFFyN7w4xeRWNT858mSFXaJJCQiIqUEbXI1qF4XvtYlKLYR1yc1FVvMIVrSSXWd2MyoQhxuBatQp-qcNWIah2E1VUHSaa7e1odz_uG_4f3gzhD6qVbfEvAO6DWQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Furukawa, M.</creator><creator>Morrison, P. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1587-5072</orcidid><orcidid>https://orcid.org/0000-0002-8256-9596</orcidid><orcidid>https://orcid.org/0000000315875072</orcidid><orcidid>https://orcid.org/0000000282569596</orcidid></search><sort><creationdate>20221001</creationdate><title>Linear stability analysis via simulated annealing and accelerated relaxation</title><author>Furukawa, M. ; Morrison, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-1f56b1d338061d6f3e6e914db5758679ac700edcb339dd83454691f360d48bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advection</topic><topic>Evolution</topic><topic>Hamiltonian functions</topic><topic>Magnetohydrodynamics</topic><topic>Perturbation</topic><topic>Plasma physics</topic><topic>Relaxation method (mathematics)</topic><topic>Simulated annealing</topic><topic>Stability analysis</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furukawa, M.</creatorcontrib><creatorcontrib>Morrison, P. J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furukawa, M.</au><au>Morrison, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear stability analysis via simulated annealing and accelerated relaxation</atitle><jtitle>Physics of plasmas</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>29</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Simulated annealing (SA) is a kind of relaxation method for finding equilibria of Hamiltonian systems. A set of evolution equations is solved with SA, which is derived from the original Hamiltonian system so that the energy of the system changes monotonically while preserving Casimir invariants inherent to noncanonical Hamiltonian systems. The energy extremum reached by SA is an equilibrium. Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. The procedure of the stability analysis is explained, and some examples are shown. Because the time evolution is computationally time consuming, efficient relaxation is necessary for SA to be practically useful. An acceleration method is developed by introducing time dependence in the symmetric kernel used in the double bracket, which is part of the SA formulation described here. An explicit formulation for low-beta reduced magnetohydrodynamics (MHD) in cylindrical geometry is presented. Since SA for low-beta reduced MHD has two advection fields that relax, it is important to balance the orders of magnitude of these advection fields.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0101095</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1587-5072</orcidid><orcidid>https://orcid.org/0000-0002-8256-9596</orcidid><orcidid>https://orcid.org/0000000315875072</orcidid><orcidid>https://orcid.org/0000000282569596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-10, Vol.29 (10) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1891581 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Advection Evolution Hamiltonian functions Magnetohydrodynamics Perturbation Plasma physics Relaxation method (mathematics) Simulated annealing Stability analysis Time dependence |
title | Linear stability analysis via simulated annealing and accelerated relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20stability%20analysis%20via%20simulated%20annealing%20and%20accelerated%20relaxation&rft.jtitle=Physics%20of%20plasmas&rft.au=Furukawa,%20M.&rft.date=2022-10-01&rft.volume=29&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0101095&rft_dat=%3Cproquest_osti_%3E2723252979%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723252979&rft_id=info:pmid/&rfr_iscdi=true |