Sub 20 cm -1 computational prediction of the CH bond energy - a case of systematic error in computational thermochemistry
The bond dissociation energy of methylidyne, (CH), is studied using an improved version of the High-Accuracy Extrapolated Thermochemistry (HEAT) approach as well as the Feller-Peterson-Dixon (FPD) model chemistry. These calculations, which include basis sets up to nonuple (aug-cc-pCV9Z) quality, are...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (32), p.21162-21172 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21172 |
---|---|
container_issue | 32 |
container_start_page | 21162 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Thorpe, James H Feller, David Bross, David H Ruscic, Branko Stanton, John F |
description | The bond dissociation energy of methylidyne,
(CH), is studied using an improved version of the High-Accuracy Extrapolated
Thermochemistry (HEAT) approach as well as the Feller-Peterson-Dixon (FPD) model chemistry. These calculations, which include basis sets up to nonuple (aug-cc-pCV9Z) quality, are expected to be capable of providing results substantially more accurate than the
1 kJ mol
level that is characteristic of standard high-accuracy protocols for computational thermochemistry. The calculated 0 K CH bond energy (27 954 ± 15 cm
for HEAT and 27 956 ± 15 cm
for FPD), along with equivalent treatments of the CH ionization energy and the CH
dissociation energy (85 829 ± 15 cm
and 32 946 ± 15 cm
, respectively), were compared to the existing benchmarks from Active Thermochemical Tables (ATcT), uncovering an unexpected difference for
(CH). This has prompted a detailed reexamination of the provenance of the corresponding ATcT benchmark, allowing the discovery and subsequent correction of a systematic error present in several published high-level calculations, ultimately yielding an amended ATcT benchmark for
(CH). Finally, the current theoretical results were added to the ATcT Thermochemical Network, producing refined ATcT estimates of 27 957.3 ± 6.0 cm
for
(CH), 32 946.7 ± 0.6 cm
for
(CH
), and 85 831.0 ± 6.0 cm
for IE(CH). |
doi_str_mv | 10.1039/d2cp03964h |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1891356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722314187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-31558e150496bd1e72ed818cb555c853de8744f958060ce492f63756db2db0c13</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqVw4QcgCy4IKeDxV5xjtXwsUiWQgHOUjCdsqk0cbOeQf4-XLT30NGP58aPxvIy9BPEehGo-eIlLqVYfHrFL0FZVjXD68X1f2wv2LKVbIQQYUE_ZhbJSCC3dJdt-rD2XguPEK-AYpmXNXR7D3B35EsmPeDrwMPB8IL7b8z7MntNM8ffGK95x7BKdrtOWMk3lKXKKMUQ-zg90RRCngAeaxpTj9pw9Gbpjohd39Yr9-vzp525f3Xz78nV3fVOhEi5XCoxxBEboxvYeqJbkHTjsjTHojPLkaq2HxjhhBZJu5GBVbazvpe8Fgrpir8_ekPLYJhwz4QHDPBPmFlwDytgCvT1DSwx_Vkq5LUMiHY_dTGFNraylVKDB1QV98wC9DWssHyyUMwCqbPkkfHemMIaUIg3tEsepi1sLoj2l1n6Uu-__UtsX-NWdcu0n8vfo_5jUX1sdkBs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851130016</pqid></control><display><type>article</type><title>Sub 20 cm -1 computational prediction of the CH bond energy - a case of systematic error in computational thermochemistry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Thorpe, James H ; Feller, David ; Bross, David H ; Ruscic, Branko ; Stanton, John F</creator><creatorcontrib>Thorpe, James H ; Feller, David ; Bross, David H ; Ruscic, Branko ; Stanton, John F</creatorcontrib><description>The bond dissociation energy of methylidyne,
(CH), is studied using an improved version of the High-Accuracy Extrapolated
Thermochemistry (HEAT) approach as well as the Feller-Peterson-Dixon (FPD) model chemistry. These calculations, which include basis sets up to nonuple (aug-cc-pCV9Z) quality, are expected to be capable of providing results substantially more accurate than the
1 kJ mol
level that is characteristic of standard high-accuracy protocols for computational thermochemistry. The calculated 0 K CH bond energy (27 954 ± 15 cm
for HEAT and 27 956 ± 15 cm
for FPD), along with equivalent treatments of the CH ionization energy and the CH
dissociation energy (85 829 ± 15 cm
and 32 946 ± 15 cm
, respectively), were compared to the existing benchmarks from Active Thermochemical Tables (ATcT), uncovering an unexpected difference for
(CH). This has prompted a detailed reexamination of the provenance of the corresponding ATcT benchmark, allowing the discovery and subsequent correction of a systematic error present in several published high-level calculations, ultimately yielding an amended ATcT benchmark for
(CH). Finally, the current theoretical results were added to the ATcT Thermochemical Network, producing refined ATcT estimates of 27 957.3 ± 6.0 cm
for
(CH), 32 946.7 ± 0.6 cm
for
(CH
), and 85 831.0 ± 6.0 cm
for IE(CH).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp03964h</identifier><identifier>PMID: 36200428</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accuracy ; Benchmarks ; Bond energy ; Energy of dissociation ; Error correction ; Free energy ; Heat of formation ; Methylidyne ; Systematic errors ; Thermochemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (32), p.21162-21172</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-31558e150496bd1e72ed818cb555c853de8744f958060ce492f63756db2db0c13</citedby><cites>FETCH-LOGICAL-c308t-31558e150496bd1e72ed818cb555c853de8744f958060ce492f63756db2db0c13</cites><orcidid>0000-0003-2345-9781 ; 0000-0002-8218-0249 ; 0000-0002-9258-006X ; 0000-0001-5112-7886 ; 0000-0002-4372-6990 ; 0000000323459781 ; 0000000151127886 ; 0000000282180249 ; 000000029258006X ; 0000000243726990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36200428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1891356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thorpe, James H</creatorcontrib><creatorcontrib>Feller, David</creatorcontrib><creatorcontrib>Bross, David H</creatorcontrib><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Stanton, John F</creatorcontrib><title>Sub 20 cm -1 computational prediction of the CH bond energy - a case of systematic error in computational thermochemistry</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The bond dissociation energy of methylidyne,
(CH), is studied using an improved version of the High-Accuracy Extrapolated
Thermochemistry (HEAT) approach as well as the Feller-Peterson-Dixon (FPD) model chemistry. These calculations, which include basis sets up to nonuple (aug-cc-pCV9Z) quality, are expected to be capable of providing results substantially more accurate than the
1 kJ mol
level that is characteristic of standard high-accuracy protocols for computational thermochemistry. The calculated 0 K CH bond energy (27 954 ± 15 cm
for HEAT and 27 956 ± 15 cm
for FPD), along with equivalent treatments of the CH ionization energy and the CH
dissociation energy (85 829 ± 15 cm
and 32 946 ± 15 cm
, respectively), were compared to the existing benchmarks from Active Thermochemical Tables (ATcT), uncovering an unexpected difference for
(CH). This has prompted a detailed reexamination of the provenance of the corresponding ATcT benchmark, allowing the discovery and subsequent correction of a systematic error present in several published high-level calculations, ultimately yielding an amended ATcT benchmark for
(CH). Finally, the current theoretical results were added to the ATcT Thermochemical Network, producing refined ATcT estimates of 27 957.3 ± 6.0 cm
for
(CH), 32 946.7 ± 0.6 cm
for
(CH
), and 85 831.0 ± 6.0 cm
for IE(CH).</description><subject>Accuracy</subject><subject>Benchmarks</subject><subject>Bond energy</subject><subject>Energy of dissociation</subject><subject>Error correction</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Methylidyne</subject><subject>Systematic errors</subject><subject>Thermochemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EoqVw4QcgCy4IKeDxV5xjtXwsUiWQgHOUjCdsqk0cbOeQf4-XLT30NGP58aPxvIy9BPEehGo-eIlLqVYfHrFL0FZVjXD68X1f2wv2LKVbIQQYUE_ZhbJSCC3dJdt-rD2XguPEK-AYpmXNXR7D3B35EsmPeDrwMPB8IL7b8z7MntNM8ffGK95x7BKdrtOWMk3lKXKKMUQ-zg90RRCngAeaxpTj9pw9Gbpjohd39Yr9-vzp525f3Xz78nV3fVOhEi5XCoxxBEboxvYeqJbkHTjsjTHojPLkaq2HxjhhBZJu5GBVbazvpe8Fgrpir8_ekPLYJhwz4QHDPBPmFlwDytgCvT1DSwx_Vkq5LUMiHY_dTGFNraylVKDB1QV98wC9DWssHyyUMwCqbPkkfHemMIaUIg3tEsepi1sLoj2l1n6Uu-__UtsX-NWdcu0n8vfo_5jUX1sdkBs</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Thorpe, James H</creator><creator>Feller, David</creator><creator>Bross, David H</creator><creator>Ruscic, Branko</creator><creator>Stanton, John F</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2345-9781</orcidid><orcidid>https://orcid.org/0000-0002-8218-0249</orcidid><orcidid>https://orcid.org/0000-0002-9258-006X</orcidid><orcidid>https://orcid.org/0000-0001-5112-7886</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid><orcidid>https://orcid.org/0000000323459781</orcidid><orcidid>https://orcid.org/0000000151127886</orcidid><orcidid>https://orcid.org/0000000282180249</orcidid><orcidid>https://orcid.org/000000029258006X</orcidid><orcidid>https://orcid.org/0000000243726990</orcidid></search><sort><creationdate>20230816</creationdate><title>Sub 20 cm -1 computational prediction of the CH bond energy - a case of systematic error in computational thermochemistry</title><author>Thorpe, James H ; Feller, David ; Bross, David H ; Ruscic, Branko ; Stanton, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-31558e150496bd1e72ed818cb555c853de8744f958060ce492f63756db2db0c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Benchmarks</topic><topic>Bond energy</topic><topic>Energy of dissociation</topic><topic>Error correction</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Methylidyne</topic><topic>Systematic errors</topic><topic>Thermochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorpe, James H</creatorcontrib><creatorcontrib>Feller, David</creatorcontrib><creatorcontrib>Bross, David H</creatorcontrib><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Stanton, John F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorpe, James H</au><au>Feller, David</au><au>Bross, David H</au><au>Ruscic, Branko</au><au>Stanton, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub 20 cm -1 computational prediction of the CH bond energy - a case of systematic error in computational thermochemistry</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-08-16</date><risdate>2023</risdate><volume>25</volume><issue>32</issue><spage>21162</spage><epage>21172</epage><pages>21162-21172</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The bond dissociation energy of methylidyne,
(CH), is studied using an improved version of the High-Accuracy Extrapolated
Thermochemistry (HEAT) approach as well as the Feller-Peterson-Dixon (FPD) model chemistry. These calculations, which include basis sets up to nonuple (aug-cc-pCV9Z) quality, are expected to be capable of providing results substantially more accurate than the
1 kJ mol
level that is characteristic of standard high-accuracy protocols for computational thermochemistry. The calculated 0 K CH bond energy (27 954 ± 15 cm
for HEAT and 27 956 ± 15 cm
for FPD), along with equivalent treatments of the CH ionization energy and the CH
dissociation energy (85 829 ± 15 cm
and 32 946 ± 15 cm
, respectively), were compared to the existing benchmarks from Active Thermochemical Tables (ATcT), uncovering an unexpected difference for
(CH). This has prompted a detailed reexamination of the provenance of the corresponding ATcT benchmark, allowing the discovery and subsequent correction of a systematic error present in several published high-level calculations, ultimately yielding an amended ATcT benchmark for
(CH). Finally, the current theoretical results were added to the ATcT Thermochemical Network, producing refined ATcT estimates of 27 957.3 ± 6.0 cm
for
(CH), 32 946.7 ± 0.6 cm
for
(CH
), and 85 831.0 ± 6.0 cm
for IE(CH).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36200428</pmid><doi>10.1039/d2cp03964h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2345-9781</orcidid><orcidid>https://orcid.org/0000-0002-8218-0249</orcidid><orcidid>https://orcid.org/0000-0002-9258-006X</orcidid><orcidid>https://orcid.org/0000-0001-5112-7886</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid><orcidid>https://orcid.org/0000000323459781</orcidid><orcidid>https://orcid.org/0000000151127886</orcidid><orcidid>https://orcid.org/0000000282180249</orcidid><orcidid>https://orcid.org/000000029258006X</orcidid><orcidid>https://orcid.org/0000000243726990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (32), p.21162-21172 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1891356 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Accuracy Benchmarks Bond energy Energy of dissociation Error correction Free energy Heat of formation Methylidyne Systematic errors Thermochemistry |
title | Sub 20 cm -1 computational prediction of the CH bond energy - a case of systematic error in computational thermochemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub%2020%20cm%20-1%20computational%20prediction%20of%20the%20CH%20bond%20energy%20-%20a%20case%20of%20systematic%20error%20in%20computational%20thermochemistry&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Thorpe,%20James%20H&rft.date=2023-08-16&rft.volume=25&rft.issue=32&rft.spage=21162&rft.epage=21172&rft.pages=21162-21172&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp03964h&rft_dat=%3Cproquest_osti_%3E2722314187%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851130016&rft_id=info:pmid/36200428&rfr_iscdi=true |