Imprinting a Focused X-Ray Laser Beam to Measure Its Full Spatial Characteristics
The new generation of x-ray free-electron lasers opens up unique avenues for exploring matter under exotic and extreme conditions. Extensive spatial characterization of focused, typically (sub)micron-sized, laser beams is indispensable but, nevertheless, difficult to be accomplished due to excessive...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2015-07, Vol.4 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review applied |
container_volume | 4 |
creator | Chalupský, J. Boháček, P. Burian, T. Hájková, V. Hau-Riege, S. P. Heimann, P. A. Juha, L. Messerschmidt, M. Moeller, S. P. Nagler, B. Rowen, M. Schlotter, W. F. Swiggers, M. L. Turner, J. J. Krzywinski, J. |
description | The new generation of x-ray free-electron lasers opens up unique avenues for exploring matter under exotic and extreme conditions. Extensive spatial characterization of focused, typically (sub)micron-sized, laser beams is indispensable but, nevertheless, difficult to be accomplished due to excessive radiation intensities. Methods exist allowing indirect or semidirect focus characterization from a safe distance far from the focal point. Here, in this study, we present a direct method of in-focus numerical phase recovery exploiting multishot desorption imprints in poly(methyl methacrylate). Shapes of the imprints serve as input data for the newly developed code PhaRe (phase recovery), inspired by the iterative Gerchberg-Saxton algorithm. A procedure of dynamic input-output mixing guarantees that the algorithm always converges to a self-consistent paraxial Helmholtz equation solution, which is thereafter optimized for transverse spatial coherence. Very good agreement with single-shot ablation imprints in lead tungstate (PbWO4) is found. The experiment is carried out at the Linac Coherent Light Source with a focused beam monochromatized at 800 eV. The results of the coherence optimization indicate that the act of monochromatization may have an effect on otherwise very good transverse coherence of free-electron laser beams. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1890802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1890802</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18908023</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMoWLTvcHEvJC1iu1osFnTwZ3Arl3i1kbYpueng29vBwdHpO3DO8E1EECeJijZSZdMfnouQ-SWlVCpey1QG4lS2vTOdN90TEAqrB6Y73KIzvuGATA62hC14C0dCHhxB6RmKoWng0qM32EBeo0PtyRn2RvNSzB7YMIXfXYhVsbvm-8iOumJtPOla264j7SuVZuONOPkr-gAOE0AU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Imprinting a Focused X-Ray Laser Beam to Measure Its Full Spatial Characteristics</title><source>APS_美国物理学会期刊</source><creator>Chalupský, J. ; Boháček, P. ; Burian, T. ; Hájková, V. ; Hau-Riege, S. P. ; Heimann, P. A. ; Juha, L. ; Messerschmidt, M. ; Moeller, S. P. ; Nagler, B. ; Rowen, M. ; Schlotter, W. F. ; Swiggers, M. L. ; Turner, J. J. ; Krzywinski, J.</creator><creatorcontrib>Chalupský, J. ; Boháček, P. ; Burian, T. ; Hájková, V. ; Hau-Riege, S. P. ; Heimann, P. A. ; Juha, L. ; Messerschmidt, M. ; Moeller, S. P. ; Nagler, B. ; Rowen, M. ; Schlotter, W. F. ; Swiggers, M. L. ; Turner, J. J. ; Krzywinski, J. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>The new generation of x-ray free-electron lasers opens up unique avenues for exploring matter under exotic and extreme conditions. Extensive spatial characterization of focused, typically (sub)micron-sized, laser beams is indispensable but, nevertheless, difficult to be accomplished due to excessive radiation intensities. Methods exist allowing indirect or semidirect focus characterization from a safe distance far from the focal point. Here, in this study, we present a direct method of in-focus numerical phase recovery exploiting multishot desorption imprints in poly(methyl methacrylate). Shapes of the imprints serve as input data for the newly developed code PhaRe (phase recovery), inspired by the iterative Gerchberg-Saxton algorithm. A procedure of dynamic input-output mixing guarantees that the algorithm always converges to a self-consistent paraxial Helmholtz equation solution, which is thereafter optimized for transverse spatial coherence. Very good agreement with single-shot ablation imprints in lead tungstate (PbWO4) is found. The experiment is carried out at the Linac Coherent Light Source with a focused beam monochromatized at 800 eV. The results of the coherence optimization indicate that the act of monochromatization may have an effect on otherwise very good transverse coherence of free-electron laser beams.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; optics ; photonics</subject><ispartof>Physical review applied, 2015-07, Vol.4 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1890802$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalupský, J.</creatorcontrib><creatorcontrib>Boháček, P.</creatorcontrib><creatorcontrib>Burian, T.</creatorcontrib><creatorcontrib>Hájková, V.</creatorcontrib><creatorcontrib>Hau-Riege, S. P.</creatorcontrib><creatorcontrib>Heimann, P. A.</creatorcontrib><creatorcontrib>Juha, L.</creatorcontrib><creatorcontrib>Messerschmidt, M.</creatorcontrib><creatorcontrib>Moeller, S. P.</creatorcontrib><creatorcontrib>Nagler, B.</creatorcontrib><creatorcontrib>Rowen, M.</creatorcontrib><creatorcontrib>Schlotter, W. F.</creatorcontrib><creatorcontrib>Swiggers, M. L.</creatorcontrib><creatorcontrib>Turner, J. J.</creatorcontrib><creatorcontrib>Krzywinski, J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Imprinting a Focused X-Ray Laser Beam to Measure Its Full Spatial Characteristics</title><title>Physical review applied</title><description>The new generation of x-ray free-electron lasers opens up unique avenues for exploring matter under exotic and extreme conditions. Extensive spatial characterization of focused, typically (sub)micron-sized, laser beams is indispensable but, nevertheless, difficult to be accomplished due to excessive radiation intensities. Methods exist allowing indirect or semidirect focus characterization from a safe distance far from the focal point. Here, in this study, we present a direct method of in-focus numerical phase recovery exploiting multishot desorption imprints in poly(methyl methacrylate). Shapes of the imprints serve as input data for the newly developed code PhaRe (phase recovery), inspired by the iterative Gerchberg-Saxton algorithm. A procedure of dynamic input-output mixing guarantees that the algorithm always converges to a self-consistent paraxial Helmholtz equation solution, which is thereafter optimized for transverse spatial coherence. Very good agreement with single-shot ablation imprints in lead tungstate (PbWO4) is found. The experiment is carried out at the Linac Coherent Light Source with a focused beam monochromatized at 800 eV. The results of the coherence optimization indicate that the act of monochromatization may have an effect on otherwise very good transverse coherence of free-electron laser beams.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>optics</subject><subject>photonics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNjr0KwjAURoMoWLTvcHEvJC1iu1osFnTwZ3Arl3i1kbYpueng29vBwdHpO3DO8E1EECeJijZSZdMfnouQ-SWlVCpey1QG4lS2vTOdN90TEAqrB6Y73KIzvuGATA62hC14C0dCHhxB6RmKoWng0qM32EBeo0PtyRn2RvNSzB7YMIXfXYhVsbvm-8iOumJtPOla264j7SuVZuONOPkr-gAOE0AU</recordid><startdate>20150714</startdate><enddate>20150714</enddate><creator>Chalupský, J.</creator><creator>Boháček, P.</creator><creator>Burian, T.</creator><creator>Hájková, V.</creator><creator>Hau-Riege, S. P.</creator><creator>Heimann, P. A.</creator><creator>Juha, L.</creator><creator>Messerschmidt, M.</creator><creator>Moeller, S. P.</creator><creator>Nagler, B.</creator><creator>Rowen, M.</creator><creator>Schlotter, W. F.</creator><creator>Swiggers, M. L.</creator><creator>Turner, J. J.</creator><creator>Krzywinski, J.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150714</creationdate><title>Imprinting a Focused X-Ray Laser Beam to Measure Its Full Spatial Characteristics</title><author>Chalupský, J. ; Boháček, P. ; Burian, T. ; Hájková, V. ; Hau-Riege, S. P. ; Heimann, P. A. ; Juha, L. ; Messerschmidt, M. ; Moeller, S. P. ; Nagler, B. ; Rowen, M. ; Schlotter, W. F. ; Swiggers, M. L. ; Turner, J. J. ; Krzywinski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18908023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>optics</topic><topic>photonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalupský, J.</creatorcontrib><creatorcontrib>Boháček, P.</creatorcontrib><creatorcontrib>Burian, T.</creatorcontrib><creatorcontrib>Hájková, V.</creatorcontrib><creatorcontrib>Hau-Riege, S. P.</creatorcontrib><creatorcontrib>Heimann, P. A.</creatorcontrib><creatorcontrib>Juha, L.</creatorcontrib><creatorcontrib>Messerschmidt, M.</creatorcontrib><creatorcontrib>Moeller, S. P.</creatorcontrib><creatorcontrib>Nagler, B.</creatorcontrib><creatorcontrib>Rowen, M.</creatorcontrib><creatorcontrib>Schlotter, W. F.</creatorcontrib><creatorcontrib>Swiggers, M. L.</creatorcontrib><creatorcontrib>Turner, J. J.</creatorcontrib><creatorcontrib>Krzywinski, J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalupský, J.</au><au>Boháček, P.</au><au>Burian, T.</au><au>Hájková, V.</au><au>Hau-Riege, S. P.</au><au>Heimann, P. A.</au><au>Juha, L.</au><au>Messerschmidt, M.</au><au>Moeller, S. P.</au><au>Nagler, B.</au><au>Rowen, M.</au><au>Schlotter, W. F.</au><au>Swiggers, M. L.</au><au>Turner, J. J.</au><au>Krzywinski, J.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imprinting a Focused X-Ray Laser Beam to Measure Its Full Spatial Characteristics</atitle><jtitle>Physical review applied</jtitle><date>2015-07-14</date><risdate>2015</risdate><volume>4</volume><issue>1</issue><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>The new generation of x-ray free-electron lasers opens up unique avenues for exploring matter under exotic and extreme conditions. Extensive spatial characterization of focused, typically (sub)micron-sized, laser beams is indispensable but, nevertheless, difficult to be accomplished due to excessive radiation intensities. Methods exist allowing indirect or semidirect focus characterization from a safe distance far from the focal point. Here, in this study, we present a direct method of in-focus numerical phase recovery exploiting multishot desorption imprints in poly(methyl methacrylate). Shapes of the imprints serve as input data for the newly developed code PhaRe (phase recovery), inspired by the iterative Gerchberg-Saxton algorithm. A procedure of dynamic input-output mixing guarantees that the algorithm always converges to a self-consistent paraxial Helmholtz equation solution, which is thereafter optimized for transverse spatial coherence. Very good agreement with single-shot ablation imprints in lead tungstate (PbWO4) is found. The experiment is carried out at the Linac Coherent Light Source with a focused beam monochromatized at 800 eV. The results of the coherence optimization indicate that the act of monochromatization may have an effect on otherwise very good transverse coherence of free-electron laser beams.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2015-07, Vol.4 (1) |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_osti_scitechconnect_1890802 |
source | APS_美国物理学会期刊 |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS optics photonics |
title | Imprinting a Focused X-Ray Laser Beam to Measure Its Full Spatial Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imprinting%20a%20Focused%20X-Ray%20Laser%20Beam%20to%20Measure%20Its%20Full%20Spatial%20Characteristics&rft.jtitle=Physical%20review%20applied&rft.au=Chalupsk%C3%BD,%20J.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-07-14&rft.volume=4&rft.issue=1&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/&rft_dat=%3Costi%3E1890802%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |