Simple thermal vapor deposition process for and characterization of n-type indium oxysulfide thin films

The search continues for alternative nontoxic n-type electron transport layers in optoelectronic thin-film devices. Indium oxysulfide, In2(O,S)3, represents one promising material for this application, especially when paired with chalcogenide absorber layers. The ternary nature of the composition al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2022-12, Vol.40 (6)
Hauptverfasser: Jayaraman, Ashwin, Kim, Sang Bok, Davis, Luke M., Lou, Xiabing, Zhao, Xizhu, Gordon, Roy G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 40
creator Jayaraman, Ashwin
Kim, Sang Bok
Davis, Luke M.
Lou, Xiabing
Zhao, Xizhu
Gordon, Roy G.
description The search continues for alternative nontoxic n-type electron transport layers in optoelectronic thin-film devices. Indium oxysulfide, In2(O,S)3, represents one promising material for this application, especially when paired with chalcogenide absorber layers. The ternary nature of the composition allows for electrical conductivity and optical bandgap tuning by tailoring the sulfur to oxygen ratio in the oxysulfide alloy. However, thin films of In2(O,S)3 are typically deposited only by chemical bath deposition or plasma-enhanced atomic layer deposition. We report deposition of thin films of In2(O,S)3 in a custom-built thermal reactor using only water vapor and hydrogen sulfide as the coreactants. This advance is enabled by the use of a recently reported, highly reactive indium formamidinate precursor. As shown by x-ray photoelectron spectroscopy, the composition can be tuned from pure In2O3 to pure In2S3 by varying the ratio of cycles employing water or hydrogen sulfide. The oxygen to the sulfur ratio in the film can be controlled by altering the dose sequence, although films typically contain more sulfur than would be expected naively from the percentage of hydrogen sulfide doses in the deposition recipe. Rutherford backscattering spectrometry confirms the composition is sulfur-rich relative to the dosing ratio. Structural characterization indicates films are relatively amorphous in nature. Electrically, these films offer reasonably constant electron mobility at different O:S ratios, with an electron concentration tunable over 4 orders of magnitude. These oxysulfide films possess a higher indirect bandgap than their oxygen-free indium sulfide counterparts, indicating higher transmittance to blue light. These indium oxysulfide films may be suitable candidates for electron transport layers in thin-film solar cells where their wider bandgap might result in higher optical transparency and thus short circuit current density, while the tunability of their conduction band offset with an absorber layer may result in higher open circuit voltage.
doi_str_mv 10.1116/6.0001997
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1889761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0001997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-69664e5e2d284bc8d4f9130b561ce09015265eb11e21a50e3653309d7404a32d3</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCtbqwn8Q3ClMzU0mmZmlFF9QcKGuQ5qHjcxMhiQt1l_v1Bbcu7pw-ThwDkKXQGYAIG7FjBACTVMdoQlwSoqa8-YYTUjFyoICgVN0ltLniCglYoI-Xn03tBbnlY2davFGDSFiY4eQfPahx0MM2qaE3fhWvcF6paLS2Ub_rX5BcLgv8naw2PfGrzscvrZp3Tpvdqm-x863XTpHJ061yV4c7hS9P9y_zZ-Kxcvj8_xuUWgmIBeiEaK03FJD63Kpa1O6BhhZcgHakoaMlQS3SwBLQXFimeCMkcZUJSkVo4ZN0dU-N6TsZdI-W73Soe-tzhLquqkEjOh6j3QMKUXr5BB9p-JWApG7GaWQhxlHe7O3u6zfxv_DmxD_oByMYz9QbIEi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple thermal vapor deposition process for and characterization of n-type indium oxysulfide thin films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jayaraman, Ashwin ; Kim, Sang Bok ; Davis, Luke M. ; Lou, Xiabing ; Zhao, Xizhu ; Gordon, Roy G.</creator><creatorcontrib>Jayaraman, Ashwin ; Kim, Sang Bok ; Davis, Luke M. ; Lou, Xiabing ; Zhao, Xizhu ; Gordon, Roy G.</creatorcontrib><description>The search continues for alternative nontoxic n-type electron transport layers in optoelectronic thin-film devices. Indium oxysulfide, In2(O,S)3, represents one promising material for this application, especially when paired with chalcogenide absorber layers. The ternary nature of the composition allows for electrical conductivity and optical bandgap tuning by tailoring the sulfur to oxygen ratio in the oxysulfide alloy. However, thin films of In2(O,S)3 are typically deposited only by chemical bath deposition or plasma-enhanced atomic layer deposition. We report deposition of thin films of In2(O,S)3 in a custom-built thermal reactor using only water vapor and hydrogen sulfide as the coreactants. This advance is enabled by the use of a recently reported, highly reactive indium formamidinate precursor. As shown by x-ray photoelectron spectroscopy, the composition can be tuned from pure In2O3 to pure In2S3 by varying the ratio of cycles employing water or hydrogen sulfide. The oxygen to the sulfur ratio in the film can be controlled by altering the dose sequence, although films typically contain more sulfur than would be expected naively from the percentage of hydrogen sulfide doses in the deposition recipe. Rutherford backscattering spectrometry confirms the composition is sulfur-rich relative to the dosing ratio. Structural characterization indicates films are relatively amorphous in nature. Electrically, these films offer reasonably constant electron mobility at different O:S ratios, with an electron concentration tunable over 4 orders of magnitude. These oxysulfide films possess a higher indirect bandgap than their oxygen-free indium sulfide counterparts, indicating higher transmittance to blue light. These indium oxysulfide films may be suitable candidates for electron transport layers in thin-film solar cells where their wider bandgap might result in higher optical transparency and thus short circuit current density, while the tunability of their conduction band offset with an absorber layer may result in higher open circuit voltage.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0001997</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><publisher>United States: American Vacuum Society</publisher><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2022-12, Vol.40 (6)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-69664e5e2d284bc8d4f9130b561ce09015265eb11e21a50e3653309d7404a32d3</citedby><cites>FETCH-LOGICAL-c361t-69664e5e2d284bc8d4f9130b561ce09015265eb11e21a50e3653309d7404a32d3</cites><orcidid>0000-0002-8491-0831 ; 0000-0002-1047-9866 ; 0000-0002-4086-7296 ; 0000-0001-5980-268X ; 0000-0002-2868-7823 ; 0000000284910831 ; 0000000228687823 ; 000000015980268X ; 0000000240867296 ; 0000000210479866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4511,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1889761$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayaraman, Ashwin</creatorcontrib><creatorcontrib>Kim, Sang Bok</creatorcontrib><creatorcontrib>Davis, Luke M.</creatorcontrib><creatorcontrib>Lou, Xiabing</creatorcontrib><creatorcontrib>Zhao, Xizhu</creatorcontrib><creatorcontrib>Gordon, Roy G.</creatorcontrib><title>Simple thermal vapor deposition process for and characterization of n-type indium oxysulfide thin films</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>The search continues for alternative nontoxic n-type electron transport layers in optoelectronic thin-film devices. Indium oxysulfide, In2(O,S)3, represents one promising material for this application, especially when paired with chalcogenide absorber layers. The ternary nature of the composition allows for electrical conductivity and optical bandgap tuning by tailoring the sulfur to oxygen ratio in the oxysulfide alloy. However, thin films of In2(O,S)3 are typically deposited only by chemical bath deposition or plasma-enhanced atomic layer deposition. We report deposition of thin films of In2(O,S)3 in a custom-built thermal reactor using only water vapor and hydrogen sulfide as the coreactants. This advance is enabled by the use of a recently reported, highly reactive indium formamidinate precursor. As shown by x-ray photoelectron spectroscopy, the composition can be tuned from pure In2O3 to pure In2S3 by varying the ratio of cycles employing water or hydrogen sulfide. The oxygen to the sulfur ratio in the film can be controlled by altering the dose sequence, although films typically contain more sulfur than would be expected naively from the percentage of hydrogen sulfide doses in the deposition recipe. Rutherford backscattering spectrometry confirms the composition is sulfur-rich relative to the dosing ratio. Structural characterization indicates films are relatively amorphous in nature. Electrically, these films offer reasonably constant electron mobility at different O:S ratios, with an electron concentration tunable over 4 orders of magnitude. These oxysulfide films possess a higher indirect bandgap than their oxygen-free indium sulfide counterparts, indicating higher transmittance to blue light. These indium oxysulfide films may be suitable candidates for electron transport layers in thin-film solar cells where their wider bandgap might result in higher optical transparency and thus short circuit current density, while the tunability of their conduction band offset with an absorber layer may result in higher open circuit voltage.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCtbqwn8Q3ClMzU0mmZmlFF9QcKGuQ5qHjcxMhiQt1l_v1Bbcu7pw-ThwDkKXQGYAIG7FjBACTVMdoQlwSoqa8-YYTUjFyoICgVN0ltLniCglYoI-Xn03tBbnlY2davFGDSFiY4eQfPahx0MM2qaE3fhWvcF6paLS2Ub_rX5BcLgv8naw2PfGrzscvrZp3Tpvdqm-x863XTpHJ061yV4c7hS9P9y_zZ-Kxcvj8_xuUWgmIBeiEaK03FJD63Kpa1O6BhhZcgHakoaMlQS3SwBLQXFimeCMkcZUJSkVo4ZN0dU-N6TsZdI-W73Soe-tzhLquqkEjOh6j3QMKUXr5BB9p-JWApG7GaWQhxlHe7O3u6zfxv_DmxD_oByMYz9QbIEi</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Jayaraman, Ashwin</creator><creator>Kim, Sang Bok</creator><creator>Davis, Luke M.</creator><creator>Lou, Xiabing</creator><creator>Zhao, Xizhu</creator><creator>Gordon, Roy G.</creator><general>American Vacuum Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8491-0831</orcidid><orcidid>https://orcid.org/0000-0002-1047-9866</orcidid><orcidid>https://orcid.org/0000-0002-4086-7296</orcidid><orcidid>https://orcid.org/0000-0001-5980-268X</orcidid><orcidid>https://orcid.org/0000-0002-2868-7823</orcidid><orcidid>https://orcid.org/0000000284910831</orcidid><orcidid>https://orcid.org/0000000228687823</orcidid><orcidid>https://orcid.org/000000015980268X</orcidid><orcidid>https://orcid.org/0000000240867296</orcidid><orcidid>https://orcid.org/0000000210479866</orcidid></search><sort><creationdate>20221201</creationdate><title>Simple thermal vapor deposition process for and characterization of n-type indium oxysulfide thin films</title><author>Jayaraman, Ashwin ; Kim, Sang Bok ; Davis, Luke M. ; Lou, Xiabing ; Zhao, Xizhu ; Gordon, Roy G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-69664e5e2d284bc8d4f9130b561ce09015265eb11e21a50e3653309d7404a32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayaraman, Ashwin</creatorcontrib><creatorcontrib>Kim, Sang Bok</creatorcontrib><creatorcontrib>Davis, Luke M.</creatorcontrib><creatorcontrib>Lou, Xiabing</creatorcontrib><creatorcontrib>Zhao, Xizhu</creatorcontrib><creatorcontrib>Gordon, Roy G.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayaraman, Ashwin</au><au>Kim, Sang Bok</au><au>Davis, Luke M.</au><au>Lou, Xiabing</au><au>Zhao, Xizhu</au><au>Gordon, Roy G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple thermal vapor deposition process for and characterization of n-type indium oxysulfide thin films</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>40</volume><issue>6</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>The search continues for alternative nontoxic n-type electron transport layers in optoelectronic thin-film devices. Indium oxysulfide, In2(O,S)3, represents one promising material for this application, especially when paired with chalcogenide absorber layers. The ternary nature of the composition allows for electrical conductivity and optical bandgap tuning by tailoring the sulfur to oxygen ratio in the oxysulfide alloy. However, thin films of In2(O,S)3 are typically deposited only by chemical bath deposition or plasma-enhanced atomic layer deposition. We report deposition of thin films of In2(O,S)3 in a custom-built thermal reactor using only water vapor and hydrogen sulfide as the coreactants. This advance is enabled by the use of a recently reported, highly reactive indium formamidinate precursor. As shown by x-ray photoelectron spectroscopy, the composition can be tuned from pure In2O3 to pure In2S3 by varying the ratio of cycles employing water or hydrogen sulfide. The oxygen to the sulfur ratio in the film can be controlled by altering the dose sequence, although films typically contain more sulfur than would be expected naively from the percentage of hydrogen sulfide doses in the deposition recipe. Rutherford backscattering spectrometry confirms the composition is sulfur-rich relative to the dosing ratio. Structural characterization indicates films are relatively amorphous in nature. Electrically, these films offer reasonably constant electron mobility at different O:S ratios, with an electron concentration tunable over 4 orders of magnitude. These oxysulfide films possess a higher indirect bandgap than their oxygen-free indium sulfide counterparts, indicating higher transmittance to blue light. These indium oxysulfide films may be suitable candidates for electron transport layers in thin-film solar cells where their wider bandgap might result in higher optical transparency and thus short circuit current density, while the tunability of their conduction band offset with an absorber layer may result in higher open circuit voltage.</abstract><cop>United States</cop><pub>American Vacuum Society</pub><doi>10.1116/6.0001997</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8491-0831</orcidid><orcidid>https://orcid.org/0000-0002-1047-9866</orcidid><orcidid>https://orcid.org/0000-0002-4086-7296</orcidid><orcidid>https://orcid.org/0000-0001-5980-268X</orcidid><orcidid>https://orcid.org/0000-0002-2868-7823</orcidid><orcidid>https://orcid.org/0000000284910831</orcidid><orcidid>https://orcid.org/0000000228687823</orcidid><orcidid>https://orcid.org/000000015980268X</orcidid><orcidid>https://orcid.org/0000000240867296</orcidid><orcidid>https://orcid.org/0000000210479866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2022-12, Vol.40 (6)
issn 0734-2101
1520-8559
language eng
recordid cdi_osti_scitechconnect_1889761
source AIP Journals Complete; Alma/SFX Local Collection
title Simple thermal vapor deposition process for and characterization of n-type indium oxysulfide thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20thermal%20vapor%20deposition%20process%20for%20and%20characterization%20of%20n-type%20indium%20oxysulfide%20thin%20films&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Jayaraman,%20Ashwin&rft.date=2022-12-01&rft.volume=40&rft.issue=6&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0001997&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1116_6_0001997%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true