Nonlinear MHD modeling of n = 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR
Fully suppressing edge-localized modes (ELMs), e.g., with resonant magnetic perturbations (RMPs), is essential to reach and sustain high-performance steady-state H-mode plasmas because large ELMs can significantly reduce the lifetime of divertor components in future tokamak reactors. RMP-driven ELM...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2022-10, Vol.62 (10), p.106021 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 106021 |
container_title | Nuclear fusion |
container_volume | 62 |
creator | Kim, S.K. Pamela, S. Logan, N.C. Na, Y.-S. Lee, C.Y. Park, J.-K. Yang, S.M. Hu, Q. Becoulet, M. Huijsmans, G. Hoelzl, M. In, Y. Kim, M.W. Lee, H.H. Lee, J. Lee, J.H. Kwon, O. Kolemen, E. the JOREK Team |
description | Fully suppressing edge-localized modes (ELMs), e.g., with resonant magnetic perturbations (RMPs), is essential to reach and sustain high-performance steady-state H-mode plasmas because large ELMs can significantly reduce the lifetime of divertor components in future tokamak reactors. RMP-driven ELM suppression in KSTAR has been modeled by coupling the neoclassical transport code PENTRC to the nonlinear 3D MHD code JOREK. We have found that the radial transport from the combined effects of the kink-peeling, tearing response, and neoclassical toroidal viscosity can explain the pedestal degradation observed in experiments. In addition, it has been found that the RMP response can increase the inter-ELM heat flux on the lower outer divertor by redistributing the heat transport between the divertor plates. In addition to the degraded pedestal, ELM suppression is also attributable to the RMP-induced mode interactions. While the linear stability of peeling-ballooning mode (PBMs) improves owing to the degraded pedestal, the PBM and RMP interaction increases the spectral transfer between edge harmonics, preventing catastrophic growth and the crash of unstable modes. Here, it turns out that the magnetic islands near the pedestal top can play a vital role in mediating the mode interactions. |
doi_str_mv | 10.1088/1741-4326/ac84ef |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1889718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nfac84ef</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-9e9b8fb71fb2e4fee6eada492168a16d7f41322864005767ec826ac2a1fd79cf3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM1osLAR8Tuo4A0NVyodoAUGZLdc-Q1CxIzsd-O9JG8SEmE7v9H6ne4-QY2DnwKS8gLKArMi5uNBGFuh2yOB3tUsGjPEqG41gtE8OUvpgDArI8wFpH4Jf1R51pPPbK_oZLHbyjQZHPb2kQJ_nT1nt7dqgpQ1aTK1e0TZqn5oQW6q93ULUhHWzJdE5NG2iwdPpbE7TumkiplR3uvb0_mUxfj4ke06vEh79zCF5vZ4uJrfZ7PHmbjKeZSaX0GYVVkvpliW4JcfCIQrUVhcVByE1CFu6LgPnUhSMjUpRopFcaMM1OFtWxuVDctLfDamtVTJ1i-bdBO-7BxVIWZUgOxPrTSaGlCI61cT6U8cvBUxtqlWbHtWmR9VX2yFnPVKHRn2EdfRdiv_sp3_YvVOC95BgHFRjXf4NNOeHZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear MHD modeling of n = 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kim, S.K. ; Pamela, S. ; Logan, N.C. ; Na, Y.-S. ; Lee, C.Y. ; Park, J.-K. ; Yang, S.M. ; Hu, Q. ; Becoulet, M. ; Huijsmans, G. ; Hoelzl, M. ; In, Y. ; Kim, M.W. ; Lee, H.H. ; Lee, J. ; Lee, J.H. ; Kwon, O. ; Kolemen, E. ; the JOREK Team</creator><creatorcontrib>Kim, S.K. ; Pamela, S. ; Logan, N.C. ; Na, Y.-S. ; Lee, C.Y. ; Park, J.-K. ; Yang, S.M. ; Hu, Q. ; Becoulet, M. ; Huijsmans, G. ; Hoelzl, M. ; In, Y. ; Kim, M.W. ; Lee, H.H. ; Lee, J. ; Lee, J.H. ; Kwon, O. ; Kolemen, E. ; the JOREK Team ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Fully suppressing edge-localized modes (ELMs), e.g., with resonant magnetic perturbations (RMPs), is essential to reach and sustain high-performance steady-state H-mode plasmas because large ELMs can significantly reduce the lifetime of divertor components in future tokamak reactors. RMP-driven ELM suppression in KSTAR has been modeled by coupling the neoclassical transport code PENTRC to the nonlinear 3D MHD code JOREK. We have found that the radial transport from the combined effects of the kink-peeling, tearing response, and neoclassical toroidal viscosity can explain the pedestal degradation observed in experiments. In addition, it has been found that the RMP response can increase the inter-ELM heat flux on the lower outer divertor by redistributing the heat transport between the divertor plates. In addition to the degraded pedestal, ELM suppression is also attributable to the RMP-induced mode interactions. While the linear stability of peeling-ballooning mode (PBMs) improves owing to the degraded pedestal, the PBM and RMP interaction increases the spectral transfer between edge harmonics, preventing catastrophic growth and the crash of unstable modes. Here, it turns out that the magnetic islands near the pedestal top can play a vital role in mediating the mode interactions.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ac84ef</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; edge localized mode ; KSTAR ; mode coupling ; neoclassical toroidal viscosity ; nonlinear MHD ; peeling ballooning mode ; RMP</subject><ispartof>Nuclear fusion, 2022-10, Vol.62 (10), p.106021</ispartof><rights>2022 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-9e9b8fb71fb2e4fee6eada492168a16d7f41322864005767ec826ac2a1fd79cf3</citedby><cites>FETCH-LOGICAL-c381t-9e9b8fb71fb2e4fee6eada492168a16d7f41322864005767ec826ac2a1fd79cf3</cites><orcidid>0000-0003-0704-704X ; 0000-0001-7921-9176 ; 0000-0002-9219-1304 ; 0000-0003-2419-8667 ; 0000-0002-8877-4988 ; 0000-0002-0701-8962 ; 0000-0003-1214-1268 ; 0000-0002-8627-4584 ; 0000-0002-3268-7359 ; 0000-0003-4212-3247 ; 0000000286274584 ; 000000030704704X ; 0000000312141268 ; 0000000292191304 ; 0000000342123247 ; 0000000179219176 ; 0000000324198667 ; 0000000288774988 ; 0000000207018962 ; 0000000232687359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-4326/ac84ef/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1889718$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, S.K.</creatorcontrib><creatorcontrib>Pamela, S.</creatorcontrib><creatorcontrib>Logan, N.C.</creatorcontrib><creatorcontrib>Na, Y.-S.</creatorcontrib><creatorcontrib>Lee, C.Y.</creatorcontrib><creatorcontrib>Park, J.-K.</creatorcontrib><creatorcontrib>Yang, S.M.</creatorcontrib><creatorcontrib>Hu, Q.</creatorcontrib><creatorcontrib>Becoulet, M.</creatorcontrib><creatorcontrib>Huijsmans, G.</creatorcontrib><creatorcontrib>Hoelzl, M.</creatorcontrib><creatorcontrib>In, Y.</creatorcontrib><creatorcontrib>Kim, M.W.</creatorcontrib><creatorcontrib>Lee, H.H.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Lee, J.H.</creatorcontrib><creatorcontrib>Kwon, O.</creatorcontrib><creatorcontrib>Kolemen, E.</creatorcontrib><creatorcontrib>the JOREK Team</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Nonlinear MHD modeling of n = 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>Fully suppressing edge-localized modes (ELMs), e.g., with resonant magnetic perturbations (RMPs), is essential to reach and sustain high-performance steady-state H-mode plasmas because large ELMs can significantly reduce the lifetime of divertor components in future tokamak reactors. RMP-driven ELM suppression in KSTAR has been modeled by coupling the neoclassical transport code PENTRC to the nonlinear 3D MHD code JOREK. We have found that the radial transport from the combined effects of the kink-peeling, tearing response, and neoclassical toroidal viscosity can explain the pedestal degradation observed in experiments. In addition, it has been found that the RMP response can increase the inter-ELM heat flux on the lower outer divertor by redistributing the heat transport between the divertor plates. In addition to the degraded pedestal, ELM suppression is also attributable to the RMP-induced mode interactions. While the linear stability of peeling-ballooning mode (PBMs) improves owing to the degraded pedestal, the PBM and RMP interaction increases the spectral transfer between edge harmonics, preventing catastrophic growth and the crash of unstable modes. Here, it turns out that the magnetic islands near the pedestal top can play a vital role in mediating the mode interactions.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>edge localized mode</subject><subject>KSTAR</subject><subject>mode coupling</subject><subject>neoclassical toroidal viscosity</subject><subject>nonlinear MHD</subject><subject>peeling ballooning mode</subject><subject>RMP</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwM1osLAR8Tuo4A0NVyodoAUGZLdc-Q1CxIzsd-O9JG8SEmE7v9H6ne4-QY2DnwKS8gLKArMi5uNBGFuh2yOB3tUsGjPEqG41gtE8OUvpgDArI8wFpH4Jf1R51pPPbK_oZLHbyjQZHPb2kQJ_nT1nt7dqgpQ1aTK1e0TZqn5oQW6q93ULUhHWzJdE5NG2iwdPpbE7TumkiplR3uvb0_mUxfj4ke06vEh79zCF5vZ4uJrfZ7PHmbjKeZSaX0GYVVkvpliW4JcfCIQrUVhcVByE1CFu6LgPnUhSMjUpRopFcaMM1OFtWxuVDctLfDamtVTJ1i-bdBO-7BxVIWZUgOxPrTSaGlCI61cT6U8cvBUxtqlWbHtWmR9VX2yFnPVKHRn2EdfRdiv_sp3_YvVOC95BgHFRjXf4NNOeHZg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kim, S.K.</creator><creator>Pamela, S.</creator><creator>Logan, N.C.</creator><creator>Na, Y.-S.</creator><creator>Lee, C.Y.</creator><creator>Park, J.-K.</creator><creator>Yang, S.M.</creator><creator>Hu, Q.</creator><creator>Becoulet, M.</creator><creator>Huijsmans, G.</creator><creator>Hoelzl, M.</creator><creator>In, Y.</creator><creator>Kim, M.W.</creator><creator>Lee, H.H.</creator><creator>Lee, J.</creator><creator>Lee, J.H.</creator><creator>Kwon, O.</creator><creator>Kolemen, E.</creator><creator>the JOREK Team</creator><general>IOP Publishing</general><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0704-704X</orcidid><orcidid>https://orcid.org/0000-0001-7921-9176</orcidid><orcidid>https://orcid.org/0000-0002-9219-1304</orcidid><orcidid>https://orcid.org/0000-0003-2419-8667</orcidid><orcidid>https://orcid.org/0000-0002-8877-4988</orcidid><orcidid>https://orcid.org/0000-0002-0701-8962</orcidid><orcidid>https://orcid.org/0000-0003-1214-1268</orcidid><orcidid>https://orcid.org/0000-0002-8627-4584</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0003-4212-3247</orcidid><orcidid>https://orcid.org/0000000286274584</orcidid><orcidid>https://orcid.org/000000030704704X</orcidid><orcidid>https://orcid.org/0000000312141268</orcidid><orcidid>https://orcid.org/0000000292191304</orcidid><orcidid>https://orcid.org/0000000342123247</orcidid><orcidid>https://orcid.org/0000000179219176</orcidid><orcidid>https://orcid.org/0000000324198667</orcidid><orcidid>https://orcid.org/0000000288774988</orcidid><orcidid>https://orcid.org/0000000207018962</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid></search><sort><creationdate>20221001</creationdate><title>Nonlinear MHD modeling of n = 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR</title><author>Kim, S.K. ; Pamela, S. ; Logan, N.C. ; Na, Y.-S. ; Lee, C.Y. ; Park, J.-K. ; Yang, S.M. ; Hu, Q. ; Becoulet, M. ; Huijsmans, G. ; Hoelzl, M. ; In, Y. ; Kim, M.W. ; Lee, H.H. ; Lee, J. ; Lee, J.H. ; Kwon, O. ; Kolemen, E. ; the JOREK Team</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-9e9b8fb71fb2e4fee6eada492168a16d7f41322864005767ec826ac2a1fd79cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>edge localized mode</topic><topic>KSTAR</topic><topic>mode coupling</topic><topic>neoclassical toroidal viscosity</topic><topic>nonlinear MHD</topic><topic>peeling ballooning mode</topic><topic>RMP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, S.K.</creatorcontrib><creatorcontrib>Pamela, S.</creatorcontrib><creatorcontrib>Logan, N.C.</creatorcontrib><creatorcontrib>Na, Y.-S.</creatorcontrib><creatorcontrib>Lee, C.Y.</creatorcontrib><creatorcontrib>Park, J.-K.</creatorcontrib><creatorcontrib>Yang, S.M.</creatorcontrib><creatorcontrib>Hu, Q.</creatorcontrib><creatorcontrib>Becoulet, M.</creatorcontrib><creatorcontrib>Huijsmans, G.</creatorcontrib><creatorcontrib>Hoelzl, M.</creatorcontrib><creatorcontrib>In, Y.</creatorcontrib><creatorcontrib>Kim, M.W.</creatorcontrib><creatorcontrib>Lee, H.H.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Lee, J.H.</creatorcontrib><creatorcontrib>Kwon, O.</creatorcontrib><creatorcontrib>Kolemen, E.</creatorcontrib><creatorcontrib>the JOREK Team</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, S.K.</au><au>Pamela, S.</au><au>Logan, N.C.</au><au>Na, Y.-S.</au><au>Lee, C.Y.</au><au>Park, J.-K.</au><au>Yang, S.M.</au><au>Hu, Q.</au><au>Becoulet, M.</au><au>Huijsmans, G.</au><au>Hoelzl, M.</au><au>In, Y.</au><au>Kim, M.W.</au><au>Lee, H.H.</au><au>Lee, J.</au><au>Lee, J.H.</au><au>Kwon, O.</au><au>Kolemen, E.</au><au>the JOREK Team</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear MHD modeling of n = 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>62</volume><issue>10</issue><spage>106021</spage><pages>106021-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>Fully suppressing edge-localized modes (ELMs), e.g., with resonant magnetic perturbations (RMPs), is essential to reach and sustain high-performance steady-state H-mode plasmas because large ELMs can significantly reduce the lifetime of divertor components in future tokamak reactors. RMP-driven ELM suppression in KSTAR has been modeled by coupling the neoclassical transport code PENTRC to the nonlinear 3D MHD code JOREK. We have found that the radial transport from the combined effects of the kink-peeling, tearing response, and neoclassical toroidal viscosity can explain the pedestal degradation observed in experiments. In addition, it has been found that the RMP response can increase the inter-ELM heat flux on the lower outer divertor by redistributing the heat transport between the divertor plates. In addition to the degraded pedestal, ELM suppression is also attributable to the RMP-induced mode interactions. While the linear stability of peeling-ballooning mode (PBMs) improves owing to the degraded pedestal, the PBM and RMP interaction increases the spectral transfer between edge harmonics, preventing catastrophic growth and the crash of unstable modes. Here, it turns out that the magnetic islands near the pedestal top can play a vital role in mediating the mode interactions.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1741-4326/ac84ef</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0704-704X</orcidid><orcidid>https://orcid.org/0000-0001-7921-9176</orcidid><orcidid>https://orcid.org/0000-0002-9219-1304</orcidid><orcidid>https://orcid.org/0000-0003-2419-8667</orcidid><orcidid>https://orcid.org/0000-0002-8877-4988</orcidid><orcidid>https://orcid.org/0000-0002-0701-8962</orcidid><orcidid>https://orcid.org/0000-0003-1214-1268</orcidid><orcidid>https://orcid.org/0000-0002-8627-4584</orcidid><orcidid>https://orcid.org/0000-0002-3268-7359</orcidid><orcidid>https://orcid.org/0000-0003-4212-3247</orcidid><orcidid>https://orcid.org/0000000286274584</orcidid><orcidid>https://orcid.org/000000030704704X</orcidid><orcidid>https://orcid.org/0000000312141268</orcidid><orcidid>https://orcid.org/0000000292191304</orcidid><orcidid>https://orcid.org/0000000342123247</orcidid><orcidid>https://orcid.org/0000000179219176</orcidid><orcidid>https://orcid.org/0000000324198667</orcidid><orcidid>https://orcid.org/0000000288774988</orcidid><orcidid>https://orcid.org/0000000207018962</orcidid><orcidid>https://orcid.org/0000000232687359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2022-10, Vol.62 (10), p.106021 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_osti_scitechconnect_1889718 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY edge localized mode KSTAR mode coupling neoclassical toroidal viscosity nonlinear MHD peeling ballooning mode RMP |
title | Nonlinear MHD modeling of n = 1 RMP-induced pedestal transport and mode coupling effects on ELM suppression in KSTAR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20MHD%20modeling%20of%20n%20=%201%20RMP-induced%20pedestal%20transport%20and%20mode%20coupling%20effects%20on%20ELM%20suppression%20in%20KSTAR&rft.jtitle=Nuclear%20fusion&rft.au=Kim,%20S.K.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-10-01&rft.volume=62&rft.issue=10&rft.spage=106021&rft.pages=106021-&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/1741-4326/ac84ef&rft_dat=%3Ciop_osti_%3Enfac84ef%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |