Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene
The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we e...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2022-04, Vol.126 (15), p.6543-6555 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6555 |
---|---|
container_issue | 15 |
container_start_page | 6543 |
container_title | Journal of physical chemistry. C |
container_volume | 126 |
creator | Zhao, Muyuan Jimenez, Jayvic C Wang, Chunlai Rui, Guanchun Ma, Tingrui Lu, Chenwei Rheingold, Arnold L Li, Ruipeng Zhu, Lei Sauvé, Geneviève |
description | The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we explored the fluorination of peripheral aryl groups to increase intermolecular cofacial π–π stacking interactions, which are desirable for electron transport. Complexes with fluorine on the distal phenyls [Zn(1F-L2)2], on the naphthyls [Zn(2F-L2)2], and on both [Zn(3F-L2)2] were synthesized and characterized. All three complexes had similar optical and electrochemical properties. The crystal packing structure of Zn(2F-L2)2 and Zn(3F-L2)2 revealed cofacial parallel-displaced π–π stacking between the fluorinated 1-naphthylethynyl groups. Such a cofacial orientation was not observed in Zn(L2)2 crystals, suggesting that fluorination of the naphthyl groups promotes the cofacial π–π stacking orientation. The hole mobility increased from 1.0 × 10–4 cm2 V–1 s–1 for Zn(L2)2 to 0.8–1.0 × 10–3 cm2 V–1 s–1 for the fluorinated complexes. Fluorination on the naphthyl groups increased the electron mobility from 4.2 × 10–5 cm2 V–1 s–1 for Zn(L2)2 and Zn(1F-L2)2 to 2.0 × 10–4 cm2 V–1 s–1 for Zn(2F-L2)2 and Zn(3F-L2)2, consistent with cofacial π–π stacking being favorable for electron transport. The three complexes were tested in OPVs using regioregular poly(3-hexylthiophene) (P3HT) as the p-type material, and the best power conversion efficiencies were 5.2, 5.4, and 5.8% for Zn(2F-L2)2, Zn(1F-L2)2, and Zn(3F-L2)2, respectively, compared to 5.5% for Zn(L2)2. The fluorination combination found in Zn(3F-L2)2 resulted in the best device performance. This study points to a viable strategy to increase the electron mobility and performance of non-planar zinc(II) complexes of azadipyrromethene. |
doi_str_mv | 10.1021/acs.jpcc.1c09734 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1889631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b545022864</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-f0116e91baf2d0c39f1024488c452ecf8e207d31229b53e2d12375a3a21e18cc3</originalsourceid><addsrcrecordid>eNp1kctO3DAUhqOqSKXAvkurK5CawZdkkizRFNqRhosEbNhEZ07sjqnHjmwjka7mHfokfRLeoU-C5yJ2bGzL5_t_n-M_y74wOmKUs1PAMHrsEUcMaVOJ4kO2zxrB86ooy49v56L6lH0O4ZHSUlAm9rN_l846ZZ6c1xaidpY4Ra6gX8TFYAK58W7pogwkLiSZOAWowZCX1f_V35cVuY2Av7X9RcB2ZGrRSwg79txIjD7ZXbq5NjoOG19n8xsDFjx50BaPp9OTZLrsjXxOsgR818d297ZMix3MCfyBTveDT42kK2nlYbanwAR5tNsPsvuL87vJz3x2_WM6OZvlIIom5ooyNpYNm4PiHUXRqPRNRVHXWJRcoqolp1UnGOfNvBSSd4yLqgQBnElWI4qD7OvW14Wo24A6SlygszYN1rK6bsaCJYhuIfQuBC9V23u9BD-0jLbrXNqUS7vOpd3lkiTftpJNxT15m6Z4H38FCWaW7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene</title><source>ACS Publications</source><creator>Zhao, Muyuan ; Jimenez, Jayvic C ; Wang, Chunlai ; Rui, Guanchun ; Ma, Tingrui ; Lu, Chenwei ; Rheingold, Arnold L ; Li, Ruipeng ; Zhu, Lei ; Sauvé, Geneviève</creator><creatorcontrib>Zhao, Muyuan ; Jimenez, Jayvic C ; Wang, Chunlai ; Rui, Guanchun ; Ma, Tingrui ; Lu, Chenwei ; Rheingold, Arnold L ; Li, Ruipeng ; Zhu, Lei ; Sauvé, Geneviève ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we explored the fluorination of peripheral aryl groups to increase intermolecular cofacial π–π stacking interactions, which are desirable for electron transport. Complexes with fluorine on the distal phenyls [Zn(1F-L2)2], on the naphthyls [Zn(2F-L2)2], and on both [Zn(3F-L2)2] were synthesized and characterized. All three complexes had similar optical and electrochemical properties. The crystal packing structure of Zn(2F-L2)2 and Zn(3F-L2)2 revealed cofacial parallel-displaced π–π stacking between the fluorinated 1-naphthylethynyl groups. Such a cofacial orientation was not observed in Zn(L2)2 crystals, suggesting that fluorination of the naphthyl groups promotes the cofacial π–π stacking orientation. The hole mobility increased from 1.0 × 10–4 cm2 V–1 s–1 for Zn(L2)2 to 0.8–1.0 × 10–3 cm2 V–1 s–1 for the fluorinated complexes. Fluorination on the naphthyl groups increased the electron mobility from 4.2 × 10–5 cm2 V–1 s–1 for Zn(L2)2 and Zn(1F-L2)2 to 2.0 × 10–4 cm2 V–1 s–1 for Zn(2F-L2)2 and Zn(3F-L2)2, consistent with cofacial π–π stacking being favorable for electron transport. The three complexes were tested in OPVs using regioregular poly(3-hexylthiophene) (P3HT) as the p-type material, and the best power conversion efficiencies were 5.2, 5.4, and 5.8% for Zn(2F-L2)2, Zn(1F-L2)2, and Zn(3F-L2)2, respectively, compared to 5.5% for Zn(L2)2. The fluorination combination found in Zn(3F-L2)2 resulted in the best device performance. This study points to a viable strategy to increase the electron mobility and performance of non-planar zinc(II) complexes of azadipyrromethene.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c09734</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Energy Conversion and Storage ; charge transport ; halogenation ; MATERIALS SCIENCE ; mobility ; molecules ; organic polymers</subject><ispartof>Journal of physical chemistry. C, 2022-04, Vol.126 (15), p.6543-6555</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-f0116e91baf2d0c39f1024488c452ecf8e207d31229b53e2d12375a3a21e18cc3</citedby><cites>FETCH-LOGICAL-a349t-f0116e91baf2d0c39f1024488c452ecf8e207d31229b53e2d12375a3a21e18cc3</cites><orcidid>0000-0003-4472-8127 ; 0000-0002-4097-2205 ; 0000-0002-3519-4293 ; 0000-0002-5170-8979 ; 0000-0002-2342-5648 ; 0000-0001-6570-9123 ; 0000-0002-9721-0447 ; 0000000297210447 ; 0000000344728127 ; 0000000165709123 ; 0000000223425648 ; 0000000251708979 ; 0000000240972205 ; 0000000235194293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c09734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c09734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1889631$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Muyuan</creatorcontrib><creatorcontrib>Jimenez, Jayvic C</creatorcontrib><creatorcontrib>Wang, Chunlai</creatorcontrib><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Ma, Tingrui</creatorcontrib><creatorcontrib>Lu, Chenwei</creatorcontrib><creatorcontrib>Rheingold, Arnold L</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Sauvé, Geneviève</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we explored the fluorination of peripheral aryl groups to increase intermolecular cofacial π–π stacking interactions, which are desirable for electron transport. Complexes with fluorine on the distal phenyls [Zn(1F-L2)2], on the naphthyls [Zn(2F-L2)2], and on both [Zn(3F-L2)2] were synthesized and characterized. All three complexes had similar optical and electrochemical properties. The crystal packing structure of Zn(2F-L2)2 and Zn(3F-L2)2 revealed cofacial parallel-displaced π–π stacking between the fluorinated 1-naphthylethynyl groups. Such a cofacial orientation was not observed in Zn(L2)2 crystals, suggesting that fluorination of the naphthyl groups promotes the cofacial π–π stacking orientation. The hole mobility increased from 1.0 × 10–4 cm2 V–1 s–1 for Zn(L2)2 to 0.8–1.0 × 10–3 cm2 V–1 s–1 for the fluorinated complexes. Fluorination on the naphthyl groups increased the electron mobility from 4.2 × 10–5 cm2 V–1 s–1 for Zn(L2)2 and Zn(1F-L2)2 to 2.0 × 10–4 cm2 V–1 s–1 for Zn(2F-L2)2 and Zn(3F-L2)2, consistent with cofacial π–π stacking being favorable for electron transport. The three complexes were tested in OPVs using regioregular poly(3-hexylthiophene) (P3HT) as the p-type material, and the best power conversion efficiencies were 5.2, 5.4, and 5.8% for Zn(2F-L2)2, Zn(1F-L2)2, and Zn(3F-L2)2, respectively, compared to 5.5% for Zn(L2)2. The fluorination combination found in Zn(3F-L2)2 resulted in the best device performance. This study points to a viable strategy to increase the electron mobility and performance of non-planar zinc(II) complexes of azadipyrromethene.</description><subject>C: Energy Conversion and Storage</subject><subject>charge transport</subject><subject>halogenation</subject><subject>MATERIALS SCIENCE</subject><subject>mobility</subject><subject>molecules</subject><subject>organic polymers</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kctO3DAUhqOqSKXAvkurK5CawZdkkizRFNqRhosEbNhEZ07sjqnHjmwjka7mHfokfRLeoU-C5yJ2bGzL5_t_n-M_y74wOmKUs1PAMHrsEUcMaVOJ4kO2zxrB86ooy49v56L6lH0O4ZHSUlAm9rN_l846ZZ6c1xaidpY4Ra6gX8TFYAK58W7pogwkLiSZOAWowZCX1f_V35cVuY2Av7X9RcB2ZGrRSwg79txIjD7ZXbq5NjoOG19n8xsDFjx50BaPp9OTZLrsjXxOsgR818d297ZMix3MCfyBTveDT42kK2nlYbanwAR5tNsPsvuL87vJz3x2_WM6OZvlIIom5ooyNpYNm4PiHUXRqPRNRVHXWJRcoqolp1UnGOfNvBSSd4yLqgQBnElWI4qD7OvW14Wo24A6SlygszYN1rK6bsaCJYhuIfQuBC9V23u9BD-0jLbrXNqUS7vOpd3lkiTftpJNxT15m6Z4H38FCWaW7Q</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Zhao, Muyuan</creator><creator>Jimenez, Jayvic C</creator><creator>Wang, Chunlai</creator><creator>Rui, Guanchun</creator><creator>Ma, Tingrui</creator><creator>Lu, Chenwei</creator><creator>Rheingold, Arnold L</creator><creator>Li, Ruipeng</creator><creator>Zhu, Lei</creator><creator>Sauvé, Geneviève</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4472-8127</orcidid><orcidid>https://orcid.org/0000-0002-4097-2205</orcidid><orcidid>https://orcid.org/0000-0002-3519-4293</orcidid><orcidid>https://orcid.org/0000-0002-5170-8979</orcidid><orcidid>https://orcid.org/0000-0002-2342-5648</orcidid><orcidid>https://orcid.org/0000-0001-6570-9123</orcidid><orcidid>https://orcid.org/0000-0002-9721-0447</orcidid><orcidid>https://orcid.org/0000000297210447</orcidid><orcidid>https://orcid.org/0000000344728127</orcidid><orcidid>https://orcid.org/0000000165709123</orcidid><orcidid>https://orcid.org/0000000223425648</orcidid><orcidid>https://orcid.org/0000000251708979</orcidid><orcidid>https://orcid.org/0000000240972205</orcidid><orcidid>https://orcid.org/0000000235194293</orcidid></search><sort><creationdate>20220421</creationdate><title>Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene</title><author>Zhao, Muyuan ; Jimenez, Jayvic C ; Wang, Chunlai ; Rui, Guanchun ; Ma, Tingrui ; Lu, Chenwei ; Rheingold, Arnold L ; Li, Ruipeng ; Zhu, Lei ; Sauvé, Geneviève</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-f0116e91baf2d0c39f1024488c452ecf8e207d31229b53e2d12375a3a21e18cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Energy Conversion and Storage</topic><topic>charge transport</topic><topic>halogenation</topic><topic>MATERIALS SCIENCE</topic><topic>mobility</topic><topic>molecules</topic><topic>organic polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Muyuan</creatorcontrib><creatorcontrib>Jimenez, Jayvic C</creatorcontrib><creatorcontrib>Wang, Chunlai</creatorcontrib><creatorcontrib>Rui, Guanchun</creatorcontrib><creatorcontrib>Ma, Tingrui</creatorcontrib><creatorcontrib>Lu, Chenwei</creatorcontrib><creatorcontrib>Rheingold, Arnold L</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><creatorcontrib>Sauvé, Geneviève</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Muyuan</au><au>Jimenez, Jayvic C</au><au>Wang, Chunlai</au><au>Rui, Guanchun</au><au>Ma, Tingrui</au><au>Lu, Chenwei</au><au>Rheingold, Arnold L</au><au>Li, Ruipeng</au><au>Zhu, Lei</au><au>Sauvé, Geneviève</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>126</volume><issue>15</issue><spage>6543</spage><epage>6555</epage><pages>6543-6555</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The homoleptic zinc(II) complex of [2,8-di(1-naphthylethynyl) 3,7-diphenyl 1,9-(4-hexylphenyl)azadipyrromethene (ZnL2)2] is a promising non-planar non-fullerene acceptor for organic photovoltaic applications, but it has a relatively low electron mobility that may limit its performance. Here, we explored the fluorination of peripheral aryl groups to increase intermolecular cofacial π–π stacking interactions, which are desirable for electron transport. Complexes with fluorine on the distal phenyls [Zn(1F-L2)2], on the naphthyls [Zn(2F-L2)2], and on both [Zn(3F-L2)2] were synthesized and characterized. All three complexes had similar optical and electrochemical properties. The crystal packing structure of Zn(2F-L2)2 and Zn(3F-L2)2 revealed cofacial parallel-displaced π–π stacking between the fluorinated 1-naphthylethynyl groups. Such a cofacial orientation was not observed in Zn(L2)2 crystals, suggesting that fluorination of the naphthyl groups promotes the cofacial π–π stacking orientation. The hole mobility increased from 1.0 × 10–4 cm2 V–1 s–1 for Zn(L2)2 to 0.8–1.0 × 10–3 cm2 V–1 s–1 for the fluorinated complexes. Fluorination on the naphthyl groups increased the electron mobility from 4.2 × 10–5 cm2 V–1 s–1 for Zn(L2)2 and Zn(1F-L2)2 to 2.0 × 10–4 cm2 V–1 s–1 for Zn(2F-L2)2 and Zn(3F-L2)2, consistent with cofacial π–π stacking being favorable for electron transport. The three complexes were tested in OPVs using regioregular poly(3-hexylthiophene) (P3HT) as the p-type material, and the best power conversion efficiencies were 5.2, 5.4, and 5.8% for Zn(2F-L2)2, Zn(1F-L2)2, and Zn(3F-L2)2, respectively, compared to 5.5% for Zn(L2)2. The fluorination combination found in Zn(3F-L2)2 resulted in the best device performance. This study points to a viable strategy to increase the electron mobility and performance of non-planar zinc(II) complexes of azadipyrromethene.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c09734</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4472-8127</orcidid><orcidid>https://orcid.org/0000-0002-4097-2205</orcidid><orcidid>https://orcid.org/0000-0002-3519-4293</orcidid><orcidid>https://orcid.org/0000-0002-5170-8979</orcidid><orcidid>https://orcid.org/0000-0002-2342-5648</orcidid><orcidid>https://orcid.org/0000-0001-6570-9123</orcidid><orcidid>https://orcid.org/0000-0002-9721-0447</orcidid><orcidid>https://orcid.org/0000000297210447</orcidid><orcidid>https://orcid.org/0000000344728127</orcidid><orcidid>https://orcid.org/0000000165709123</orcidid><orcidid>https://orcid.org/0000000223425648</orcidid><orcidid>https://orcid.org/0000000251708979</orcidid><orcidid>https://orcid.org/0000000240972205</orcidid><orcidid>https://orcid.org/0000000235194293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2022-04, Vol.126 (15), p.6543-6555 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1889631 |
source | ACS Publications |
subjects | C: Energy Conversion and Storage charge transport halogenation MATERIALS SCIENCE mobility molecules organic polymers |
title | Monofluorination of Naphthyls Promotes the Cofacial π–π Stacking and Increases the Electron Mobility of Non-Planar Zinc(II) Complexes of Di(naphthylethynyl)azadipyrromethene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monofluorination%20of%20Naphthyls%20Promotes%20the%20Cofacial%20%CF%80%E2%80%93%CF%80%20Stacking%20and%20Increases%20the%20Electron%20Mobility%20of%20Non-Planar%20Zinc(II)%20Complexes%20of%20Di(naphthylethynyl)azadipyrromethene&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Zhao,%20Muyuan&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2022-04-21&rft.volume=126&rft.issue=15&rft.spage=6543&rft.epage=6555&rft.pages=6543-6555&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c09734&rft_dat=%3Cacs_osti_%3Eb545022864%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |