Discovery of charge density wave in a kagome lattice antiferromagnet

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies 1 , 2 . A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly couple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-09, Vol.609 (7927), p.490-495
Hauptverfasser: Teng, Xiaokun, Chen, Lebing, Ye, Feng, Rosenberg, Elliott, Liu, Zhaoyu, Yin, Jia-Xin, Jiang, Yu-Xiao, Oh, Ji Seop, Hasan, M. Zahid, Neubauer, Kelly J., Gao, Bin, Xie, Yaofeng, Hashimoto, Makoto, Lu, Donghui, Jozwiak, Chris, Bostwick, Aaron, Rotenberg, Eli, Birgeneau, Robert J., Chu, Jiun-Haw, Yi, Ming, Dai, Pengcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 7927
container_start_page 490
container_title Nature (London)
container_volume 609
creator Teng, Xiaokun
Chen, Lebing
Ye, Feng
Rosenberg, Elliott
Liu, Zhaoyu
Yin, Jia-Xin
Jiang, Yu-Xiao
Oh, Ji Seop
Hasan, M. Zahid
Neubauer, Kelly J.
Gao, Bin
Xie, Yaofeng
Hashimoto, Makoto
Lu, Donghui
Jozwiak, Chris
Bostwick, Aaron
Rotenberg, Eli
Birgeneau, Robert J.
Chu, Jiun-Haw
Yi, Ming
Dai, Pengcheng
description A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies 1 , 2 . A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity 1 , 2 . Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons 3 , 4 , non-trivial topology 5 – 7 , chiral magnetic order 8 , 9 , superconductivity and CDW order 10 – 15 . Although CDW has been found in weakly electron-correlated non-magnetic A V 3 Sb 5 ( A  = K, Rb, Cs) 10 – 15 , it has not yet been observed in correlated magnetic-ordered kagome lattice metals 4 , 16 – 21 . Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs.  16 – 19 ). The CDW in FeGe occurs at wavevectors identical to that of A V 3 Sb 5 (refs.  10 – 15 ), enhances the AFM ordered moment and induces an emergent anomalous Hall effect 22 , 23 . Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase 24 – 28 , in stark contrast to strongly correlated copper oxides 1 , 2 and nickelates 29 – 31 , in which the CDW precedes or accompanies the magnetic order. Analysis of the antiferromagnetic ordered phase of kagome lattice FeGe suggests that charge density wave is the result of a combination of electronic-correlations-driven antiferromagnetic order and instability driven by van Hove singularities.
doi_str_mv 10.1038/s41586-022-05034-z
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1888890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715493064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-595fac075fc754288a29e693b0fb20fb3efec5f2b82a3c8ad326126854a45b3f3</originalsourceid><addsrcrecordid>eNp90c9vFCEUB3BibOy2-g94MEQvXqY-fg5zNK1WkyZe9EwY9rGdugMV2Dbbv77UqZp4KAnhwOc98vgS8prBCQNhPhTJlNEdcN6BAiG7u2dkxWSvO6lN_5ysALjpwAh9SI5KuQIAxXr5ghwKzUAqxVfk7GwqPt1g3tMUqL90eYN0jbFMdU9v3Q3SKVJHf7pNmpFuXa2TR-pinQLmnGa3iVhfkoPgtgVfPZ7H5MfnT99Pv3QX386_nn686LyUunZqUMF56FXwvZLcGMcH1IMYIYy8bYEBvQp8NNwJb9xacM24Nko6qUYRxDF5u_RNpU62-Kmiv_QpRvTVMtPWAA29X9B1Tr92WKqd24i43bqIaVcs75nUSg6gG333H71KuxzbCA-qGQFaNsUX5XMqJWOw13maXd5bBvYhCLsEYVsQ9ncQ9q4VvXlsvRtnXP8t-fPzDYgFlHYVN5j_vf1E23v9FpKG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715493064</pqid></control><display><type>article</type><title>Discovery of charge density wave in a kagome lattice antiferromagnet</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Teng, Xiaokun ; Chen, Lebing ; Ye, Feng ; Rosenberg, Elliott ; Liu, Zhaoyu ; Yin, Jia-Xin ; Jiang, Yu-Xiao ; Oh, Ji Seop ; Hasan, M. Zahid ; Neubauer, Kelly J. ; Gao, Bin ; Xie, Yaofeng ; Hashimoto, Makoto ; Lu, Donghui ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Birgeneau, Robert J. ; Chu, Jiun-Haw ; Yi, Ming ; Dai, Pengcheng</creator><creatorcontrib>Teng, Xiaokun ; Chen, Lebing ; Ye, Feng ; Rosenberg, Elliott ; Liu, Zhaoyu ; Yin, Jia-Xin ; Jiang, Yu-Xiao ; Oh, Ji Seop ; Hasan, M. Zahid ; Neubauer, Kelly J. ; Gao, Bin ; Xie, Yaofeng ; Hashimoto, Makoto ; Lu, Donghui ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Birgeneau, Robert J. ; Chu, Jiun-Haw ; Yi, Ming ; Dai, Pengcheng ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies 1 , 2 . A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity 1 , 2 . Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons 3 , 4 , non-trivial topology 5 – 7 , chiral magnetic order 8 , 9 , superconductivity and CDW order 10 – 15 . Although CDW has been found in weakly electron-correlated non-magnetic A V 3 Sb 5 ( A  = K, Rb, Cs) 10 – 15 , it has not yet been observed in correlated magnetic-ordered kagome lattice metals 4 , 16 – 21 . Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs.  16 – 19 ). The CDW in FeGe occurs at wavevectors identical to that of A V 3 Sb 5 (refs.  10 – 15 ), enhances the AFM ordered moment and induces an emergent anomalous Hall effect 22 , 23 . Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase 24 – 28 , in stark contrast to strongly correlated copper oxides 1 , 2 and nickelates 29 – 31 , in which the CDW precedes or accompanies the magnetic order. Analysis of the antiferromagnetic ordered phase of kagome lattice FeGe suggests that charge density wave is the result of a combination of electronic-correlations-driven antiferromagnetic order and instability driven by van Hove singularities.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05034-z</identifier><identifier>PMID: 36104552</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/146 ; 639/766/119/2795 ; 639/766/119/997 ; Antiferromagnetism ; Charge density waves ; Cooling ; Copper ; Copper oxides ; Correlation ; Electromagnetism ; Heavy metals ; Humanities and Social Sciences ; Kagome lattice ; magnetic properties and materials ; Magnetism ; MATERIALS SCIENCE ; multidisciplinary ; Phase diagrams ; phase transitions and critical phenomena ; Science ; Science (multidisciplinary) ; Singularities ; Superconductivity ; Temperature ; Triangles</subject><ispartof>Nature (London), 2022-09, Vol.609 (7927), p.490-495</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Sep 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-595fac075fc754288a29e693b0fb20fb3efec5f2b82a3c8ad326126854a45b3f3</citedby><cites>FETCH-LOGICAL-c446t-595fac075fc754288a29e693b0fb20fb3efec5f2b82a3c8ad326126854a45b3f3</cites><orcidid>0000-0002-9894-9622 ; 0000-0003-4235-9188 ; 0000-0001-6222-1210 ; 0000-0002-9708-0443 ; 0000-0002-0980-3753 ; 0000-0002-6088-3170 ; 0000-0001-9730-3128 ; 0000-0003-1689-8997 ; 0000-0002-7185-085X ; 0000-0002-6894-3983 ; 0000-0002-2853-2362 ; 0000-0002-3979-8844 ; 0000-0001-8934-7905 ; 0000-0001-7477-4648 ; 0000-0003-1192-8333 ; 0000-0003-2661-4206 ; 0000000228532362 ; 0000000189347905 ; 0000000162221210 ; 0000000298949622 ; 000000027185085X ; 0000000174774648 ; 0000000311928333 ; 0000000197303128 ; 0000000260883170 ; 0000000316898997 ; 0000000297080443 ; 0000000209803753 ; 0000000326614206 ; 0000000268943983 ; 0000000239798844 ; 0000000342359188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36104552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1888890$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Teng, Xiaokun</creatorcontrib><creatorcontrib>Chen, Lebing</creatorcontrib><creatorcontrib>Ye, Feng</creatorcontrib><creatorcontrib>Rosenberg, Elliott</creatorcontrib><creatorcontrib>Liu, Zhaoyu</creatorcontrib><creatorcontrib>Yin, Jia-Xin</creatorcontrib><creatorcontrib>Jiang, Yu-Xiao</creatorcontrib><creatorcontrib>Oh, Ji Seop</creatorcontrib><creatorcontrib>Hasan, M. Zahid</creatorcontrib><creatorcontrib>Neubauer, Kelly J.</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Xie, Yaofeng</creatorcontrib><creatorcontrib>Hashimoto, Makoto</creatorcontrib><creatorcontrib>Lu, Donghui</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Chu, Jiun-Haw</creatorcontrib><creatorcontrib>Yi, Ming</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Discovery of charge density wave in a kagome lattice antiferromagnet</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies 1 , 2 . A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity 1 , 2 . Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons 3 , 4 , non-trivial topology 5 – 7 , chiral magnetic order 8 , 9 , superconductivity and CDW order 10 – 15 . Although CDW has been found in weakly electron-correlated non-magnetic A V 3 Sb 5 ( A  = K, Rb, Cs) 10 – 15 , it has not yet been observed in correlated magnetic-ordered kagome lattice metals 4 , 16 – 21 . Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs.  16 – 19 ). The CDW in FeGe occurs at wavevectors identical to that of A V 3 Sb 5 (refs.  10 – 15 ), enhances the AFM ordered moment and induces an emergent anomalous Hall effect 22 , 23 . Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase 24 – 28 , in stark contrast to strongly correlated copper oxides 1 , 2 and nickelates 29 – 31 , in which the CDW precedes or accompanies the magnetic order. Analysis of the antiferromagnetic ordered phase of kagome lattice FeGe suggests that charge density wave is the result of a combination of electronic-correlations-driven antiferromagnetic order and instability driven by van Hove singularities.</description><subject>140/146</subject><subject>639/766/119/2795</subject><subject>639/766/119/997</subject><subject>Antiferromagnetism</subject><subject>Charge density waves</subject><subject>Cooling</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Correlation</subject><subject>Electromagnetism</subject><subject>Heavy metals</subject><subject>Humanities and Social Sciences</subject><subject>Kagome lattice</subject><subject>magnetic properties and materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Phase diagrams</subject><subject>phase transitions and critical phenomena</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Singularities</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Triangles</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90c9vFCEUB3BibOy2-g94MEQvXqY-fg5zNK1WkyZe9EwY9rGdugMV2Dbbv77UqZp4KAnhwOc98vgS8prBCQNhPhTJlNEdcN6BAiG7u2dkxWSvO6lN_5ysALjpwAh9SI5KuQIAxXr5ghwKzUAqxVfk7GwqPt1g3tMUqL90eYN0jbFMdU9v3Q3SKVJHf7pNmpFuXa2TR-pinQLmnGa3iVhfkoPgtgVfPZ7H5MfnT99Pv3QX386_nn686LyUunZqUMF56FXwvZLcGMcH1IMYIYy8bYEBvQp8NNwJb9xacM24Nko6qUYRxDF5u_RNpU62-Kmiv_QpRvTVMtPWAA29X9B1Tr92WKqd24i43bqIaVcs75nUSg6gG333H71KuxzbCA-qGQFaNsUX5XMqJWOw13maXd5bBvYhCLsEYVsQ9ncQ9q4VvXlsvRtnXP8t-fPzDYgFlHYVN5j_vf1E23v9FpKG</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Teng, Xiaokun</creator><creator>Chen, Lebing</creator><creator>Ye, Feng</creator><creator>Rosenberg, Elliott</creator><creator>Liu, Zhaoyu</creator><creator>Yin, Jia-Xin</creator><creator>Jiang, Yu-Xiao</creator><creator>Oh, Ji Seop</creator><creator>Hasan, M. Zahid</creator><creator>Neubauer, Kelly J.</creator><creator>Gao, Bin</creator><creator>Xie, Yaofeng</creator><creator>Hashimoto, Makoto</creator><creator>Lu, Donghui</creator><creator>Jozwiak, Chris</creator><creator>Bostwick, Aaron</creator><creator>Rotenberg, Eli</creator><creator>Birgeneau, Robert J.</creator><creator>Chu, Jiun-Haw</creator><creator>Yi, Ming</creator><creator>Dai, Pengcheng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9894-9622</orcidid><orcidid>https://orcid.org/0000-0003-4235-9188</orcidid><orcidid>https://orcid.org/0000-0001-6222-1210</orcidid><orcidid>https://orcid.org/0000-0002-9708-0443</orcidid><orcidid>https://orcid.org/0000-0002-0980-3753</orcidid><orcidid>https://orcid.org/0000-0002-6088-3170</orcidid><orcidid>https://orcid.org/0000-0001-9730-3128</orcidid><orcidid>https://orcid.org/0000-0003-1689-8997</orcidid><orcidid>https://orcid.org/0000-0002-7185-085X</orcidid><orcidid>https://orcid.org/0000-0002-6894-3983</orcidid><orcidid>https://orcid.org/0000-0002-2853-2362</orcidid><orcidid>https://orcid.org/0000-0002-3979-8844</orcidid><orcidid>https://orcid.org/0000-0001-8934-7905</orcidid><orcidid>https://orcid.org/0000-0001-7477-4648</orcidid><orcidid>https://orcid.org/0000-0003-1192-8333</orcidid><orcidid>https://orcid.org/0000-0003-2661-4206</orcidid><orcidid>https://orcid.org/0000000228532362</orcidid><orcidid>https://orcid.org/0000000189347905</orcidid><orcidid>https://orcid.org/0000000162221210</orcidid><orcidid>https://orcid.org/0000000298949622</orcidid><orcidid>https://orcid.org/000000027185085X</orcidid><orcidid>https://orcid.org/0000000174774648</orcidid><orcidid>https://orcid.org/0000000311928333</orcidid><orcidid>https://orcid.org/0000000197303128</orcidid><orcidid>https://orcid.org/0000000260883170</orcidid><orcidid>https://orcid.org/0000000316898997</orcidid><orcidid>https://orcid.org/0000000297080443</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid><orcidid>https://orcid.org/0000000326614206</orcidid><orcidid>https://orcid.org/0000000268943983</orcidid><orcidid>https://orcid.org/0000000239798844</orcidid><orcidid>https://orcid.org/0000000342359188</orcidid></search><sort><creationdate>20220915</creationdate><title>Discovery of charge density wave in a kagome lattice antiferromagnet</title><author>Teng, Xiaokun ; Chen, Lebing ; Ye, Feng ; Rosenberg, Elliott ; Liu, Zhaoyu ; Yin, Jia-Xin ; Jiang, Yu-Xiao ; Oh, Ji Seop ; Hasan, M. Zahid ; Neubauer, Kelly J. ; Gao, Bin ; Xie, Yaofeng ; Hashimoto, Makoto ; Lu, Donghui ; Jozwiak, Chris ; Bostwick, Aaron ; Rotenberg, Eli ; Birgeneau, Robert J. ; Chu, Jiun-Haw ; Yi, Ming ; Dai, Pengcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-595fac075fc754288a29e693b0fb20fb3efec5f2b82a3c8ad326126854a45b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>140/146</topic><topic>639/766/119/2795</topic><topic>639/766/119/997</topic><topic>Antiferromagnetism</topic><topic>Charge density waves</topic><topic>Cooling</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Correlation</topic><topic>Electromagnetism</topic><topic>Heavy metals</topic><topic>Humanities and Social Sciences</topic><topic>Kagome lattice</topic><topic>magnetic properties and materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Phase diagrams</topic><topic>phase transitions and critical phenomena</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Singularities</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teng, Xiaokun</creatorcontrib><creatorcontrib>Chen, Lebing</creatorcontrib><creatorcontrib>Ye, Feng</creatorcontrib><creatorcontrib>Rosenberg, Elliott</creatorcontrib><creatorcontrib>Liu, Zhaoyu</creatorcontrib><creatorcontrib>Yin, Jia-Xin</creatorcontrib><creatorcontrib>Jiang, Yu-Xiao</creatorcontrib><creatorcontrib>Oh, Ji Seop</creatorcontrib><creatorcontrib>Hasan, M. Zahid</creatorcontrib><creatorcontrib>Neubauer, Kelly J.</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Xie, Yaofeng</creatorcontrib><creatorcontrib>Hashimoto, Makoto</creatorcontrib><creatorcontrib>Lu, Donghui</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Chu, Jiun-Haw</creatorcontrib><creatorcontrib>Yi, Ming</creatorcontrib><creatorcontrib>Dai, Pengcheng</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teng, Xiaokun</au><au>Chen, Lebing</au><au>Ye, Feng</au><au>Rosenberg, Elliott</au><au>Liu, Zhaoyu</au><au>Yin, Jia-Xin</au><au>Jiang, Yu-Xiao</au><au>Oh, Ji Seop</au><au>Hasan, M. Zahid</au><au>Neubauer, Kelly J.</au><au>Gao, Bin</au><au>Xie, Yaofeng</au><au>Hashimoto, Makoto</au><au>Lu, Donghui</au><au>Jozwiak, Chris</au><au>Bostwick, Aaron</au><au>Rotenberg, Eli</au><au>Birgeneau, Robert J.</au><au>Chu, Jiun-Haw</au><au>Yi, Ming</au><au>Dai, Pengcheng</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of charge density wave in a kagome lattice antiferromagnet</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-09-15</date><risdate>2022</risdate><volume>609</volume><issue>7927</issue><spage>490</spage><epage>495</epage><pages>490-495</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground-state energies 1 , 2 . A well-known example is the copper oxides, in which a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge-separated stripes that compete with superconductivity 1 , 2 . Recently, such rich phase diagrams have also been shown in correlated topological materials. In 2D kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons 3 , 4 , non-trivial topology 5 – 7 , chiral magnetic order 8 , 9 , superconductivity and CDW order 10 – 15 . Although CDW has been found in weakly electron-correlated non-magnetic A V 3 Sb 5 ( A  = K, Rb, Cs) 10 – 15 , it has not yet been observed in correlated magnetic-ordered kagome lattice metals 4 , 16 – 21 . Here we report the discovery of CDW in the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe (refs.  16 – 19 ). The CDW in FeGe occurs at wavevectors identical to that of A V 3 Sb 5 (refs.  10 – 15 ), enhances the AFM ordered moment and induces an emergent anomalous Hall effect 22 , 23 . Our findings suggest that CDW in FeGe arises from the combination of electron-correlations-driven AFM order and van Hove singularities (vHSs)-driven instability possibly associated with a chiral flux phase 24 – 28 , in stark contrast to strongly correlated copper oxides 1 , 2 and nickelates 29 – 31 , in which the CDW precedes or accompanies the magnetic order. Analysis of the antiferromagnetic ordered phase of kagome lattice FeGe suggests that charge density wave is the result of a combination of electronic-correlations-driven antiferromagnetic order and instability driven by van Hove singularities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36104552</pmid><doi>10.1038/s41586-022-05034-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9894-9622</orcidid><orcidid>https://orcid.org/0000-0003-4235-9188</orcidid><orcidid>https://orcid.org/0000-0001-6222-1210</orcidid><orcidid>https://orcid.org/0000-0002-9708-0443</orcidid><orcidid>https://orcid.org/0000-0002-0980-3753</orcidid><orcidid>https://orcid.org/0000-0002-6088-3170</orcidid><orcidid>https://orcid.org/0000-0001-9730-3128</orcidid><orcidid>https://orcid.org/0000-0003-1689-8997</orcidid><orcidid>https://orcid.org/0000-0002-7185-085X</orcidid><orcidid>https://orcid.org/0000-0002-6894-3983</orcidid><orcidid>https://orcid.org/0000-0002-2853-2362</orcidid><orcidid>https://orcid.org/0000-0002-3979-8844</orcidid><orcidid>https://orcid.org/0000-0001-8934-7905</orcidid><orcidid>https://orcid.org/0000-0001-7477-4648</orcidid><orcidid>https://orcid.org/0000-0003-1192-8333</orcidid><orcidid>https://orcid.org/0000-0003-2661-4206</orcidid><orcidid>https://orcid.org/0000000228532362</orcidid><orcidid>https://orcid.org/0000000189347905</orcidid><orcidid>https://orcid.org/0000000162221210</orcidid><orcidid>https://orcid.org/0000000298949622</orcidid><orcidid>https://orcid.org/000000027185085X</orcidid><orcidid>https://orcid.org/0000000174774648</orcidid><orcidid>https://orcid.org/0000000311928333</orcidid><orcidid>https://orcid.org/0000000197303128</orcidid><orcidid>https://orcid.org/0000000260883170</orcidid><orcidid>https://orcid.org/0000000316898997</orcidid><orcidid>https://orcid.org/0000000297080443</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid><orcidid>https://orcid.org/0000000326614206</orcidid><orcidid>https://orcid.org/0000000268943983</orcidid><orcidid>https://orcid.org/0000000239798844</orcidid><orcidid>https://orcid.org/0000000342359188</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-09, Vol.609 (7927), p.490-495
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1888890
source Nature Journals Online; Alma/SFX Local Collection
subjects 140/146
639/766/119/2795
639/766/119/997
Antiferromagnetism
Charge density waves
Cooling
Copper
Copper oxides
Correlation
Electromagnetism
Heavy metals
Humanities and Social Sciences
Kagome lattice
magnetic properties and materials
Magnetism
MATERIALS SCIENCE
multidisciplinary
Phase diagrams
phase transitions and critical phenomena
Science
Science (multidisciplinary)
Singularities
Superconductivity
Temperature
Triangles
title Discovery of charge density wave in a kagome lattice antiferromagnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20charge%20density%20wave%20in%20a%20kagome%20lattice%20antiferromagnet&rft.jtitle=Nature%20(London)&rft.au=Teng,%20Xiaokun&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-09-15&rft.volume=609&rft.issue=7927&rft.spage=490&rft.epage=495&rft.pages=490-495&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05034-z&rft_dat=%3Cproquest_osti_%3E2715493064%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715493064&rft_id=info:pmid/36104552&rfr_iscdi=true