Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties
Machine learning-based data-driven modeling can allow computationally efficient time-dependent solutions of PDEs, such as those that describe subsurface multiphysical problems. In this work, our previous approach (Kadeethum et al., 2021d) of conditional generative adversarial networks (cGAN) develop...
Gespeichert in:
Veröffentlicht in: | Computers & geosciences 2022-10, Vol.167, p.105212, Article 105212 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!