Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework
The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-08, Vol.18 (8), p.5025-5045 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5045 |
---|---|
container_issue | 8 |
container_start_page | 5025 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | López, Cesar A. Zhang, Xiaohua Aydin, Fikret Shrestha, Rebika Van, Que N. Stanley, Christopher B. Carpenter, Timothy S. Nguyen, Kien Patel, Lara A. Chen, De Burns, Violetta Hengartner, Nicolas W. Reddy, Tyler J. E. Bhatia, Harsh Di Natale, Francesco Tran, Timothy H. Chan, Albert H. Simanshu, Dhirendra K. Nissley, Dwight V. Streitz, Frederick H. Stephen, Andrew G. Turbyville, Thomas J. Lightstone, Felice C. Gnanakaran, Sandrasegaram Ingólfsson, Helgi I. Neale, Chris |
description | The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI. |
doi_str_mv | 10.1021/acs.jctc.2c00168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1885350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2693780858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-16a4ebe2b0738901699d5d12028d177457ace55811d367e6b32c3207accab2143</originalsourceid><addsrcrecordid>eNp1kUtPAyEUhSdGE2t175LoxoVTecwMzHLSWGvSxsTHmlCGKpWBCkxMf4D_W7TVhYkryOE793LvybJTBEcIYnQlZBitZJQjLCFEFdvLBqgs6ryucLX_e0fsMDsKYQUhIQUmg-yjCRsrX7yzrg_gXkm99k4KA8auXxttn4FbgrnwUVsN8AgnXfig8hsvtFUtELYF42lzP5-TCjTG5E10HXjQXW9E1M4GoG2CQNMnXcTkmPcm6pBaKDDxolPvzr8eZwdLYYI62Z3D7Gly_Tie5rO7m9txM8tFgWDMUSUKtVB4ASlhdZqyrtuyRRhi1iJKi5IKqcqSIdSSiqpqQbAkGCZVigVGBRlmZ9u6LkTNg9RRyRfprFUycsRYSUqYoIstlDbx1qsQeZf-q4wRVqUlcVzVhDLISpbQ8z_oyvXephE4phDSGjFCEwW3lPQuBK-WfO11J_yGI8i_wuMpPP4VHt-FlyyXW8v3y0_Nf_FPctCbqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700791837</pqid></control><display><type>article</type><title>Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework</title><source>American Chemical Society Journals</source><creator>López, Cesar A. ; Zhang, Xiaohua ; Aydin, Fikret ; Shrestha, Rebika ; Van, Que N. ; Stanley, Christopher B. ; Carpenter, Timothy S. ; Nguyen, Kien ; Patel, Lara A. ; Chen, De ; Burns, Violetta ; Hengartner, Nicolas W. ; Reddy, Tyler J. E. ; Bhatia, Harsh ; Di Natale, Francesco ; Tran, Timothy H. ; Chan, Albert H. ; Simanshu, Dhirendra K. ; Nissley, Dwight V. ; Streitz, Frederick H. ; Stephen, Andrew G. ; Turbyville, Thomas J. ; Lightstone, Felice C. ; Gnanakaran, Sandrasegaram ; Ingólfsson, Helgi I. ; Neale, Chris</creator><creatorcontrib>López, Cesar A. ; Zhang, Xiaohua ; Aydin, Fikret ; Shrestha, Rebika ; Van, Que N. ; Stanley, Christopher B. ; Carpenter, Timothy S. ; Nguyen, Kien ; Patel, Lara A. ; Chen, De ; Burns, Violetta ; Hengartner, Nicolas W. ; Reddy, Tyler J. E. ; Bhatia, Harsh ; Di Natale, Francesco ; Tran, Timothy H. ; Chan, Albert H. ; Simanshu, Dhirendra K. ; Nissley, Dwight V. ; Streitz, Frederick H. ; Stephen, Andrew G. ; Turbyville, Thomas J. ; Lightstone, Felice C. ; Gnanakaran, Sandrasegaram ; Ingólfsson, Helgi I. ; Neale, Chris ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Frederick National Lab. for Cancer Research, Frederick, MD (United States)</creatorcontrib><description>The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00168</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Accessibility ; Automation ; Biomolecular Systems ; Combinatorial analysis ; Conversion ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Kinases ; Lipids ; Modelling ; Molecular dynamics ; Proteins ; Representations ; Simulation ; Stereochemistry</subject><ispartof>Journal of chemical theory and computation, 2022-08, Vol.18 (8), p.5025-5045</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Aug 9, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-16a4ebe2b0738901699d5d12028d177457ace55811d367e6b32c3207accab2143</citedby><cites>FETCH-LOGICAL-a410t-16a4ebe2b0738901699d5d12028d177457ace55811d367e6b32c3207accab2143</cites><orcidid>0000-0003-3237-8043 ; 0000-0001-7523-116X ; 0000-0001-7848-9983 ; 0000-0001-8712-7773 ; 0000-0001-9912-078X ; 0000-0002-9368-3044 ; 0000-0002-4226-7710 ; 000000024157134X ; 0000000293683044 ; 0000000317042445 ; 0000000323646157 ; 0000000178489983 ; 0000000332378043 ; 000000019912078X ; 0000000187127773 ; 000000017523116X ; 0000000346843364 ; 0000000242267710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00168$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00168$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1885350$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>López, Cesar A.</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Aydin, Fikret</creatorcontrib><creatorcontrib>Shrestha, Rebika</creatorcontrib><creatorcontrib>Van, Que N.</creatorcontrib><creatorcontrib>Stanley, Christopher B.</creatorcontrib><creatorcontrib>Carpenter, Timothy S.</creatorcontrib><creatorcontrib>Nguyen, Kien</creatorcontrib><creatorcontrib>Patel, Lara A.</creatorcontrib><creatorcontrib>Chen, De</creatorcontrib><creatorcontrib>Burns, Violetta</creatorcontrib><creatorcontrib>Hengartner, Nicolas W.</creatorcontrib><creatorcontrib>Reddy, Tyler J. E.</creatorcontrib><creatorcontrib>Bhatia, Harsh</creatorcontrib><creatorcontrib>Di Natale, Francesco</creatorcontrib><creatorcontrib>Tran, Timothy H.</creatorcontrib><creatorcontrib>Chan, Albert H.</creatorcontrib><creatorcontrib>Simanshu, Dhirendra K.</creatorcontrib><creatorcontrib>Nissley, Dwight V.</creatorcontrib><creatorcontrib>Streitz, Frederick H.</creatorcontrib><creatorcontrib>Stephen, Andrew G.</creatorcontrib><creatorcontrib>Turbyville, Thomas J.</creatorcontrib><creatorcontrib>Lightstone, Felice C.</creatorcontrib><creatorcontrib>Gnanakaran, Sandrasegaram</creatorcontrib><creatorcontrib>Ingólfsson, Helgi I.</creatorcontrib><creatorcontrib>Neale, Chris</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Frederick National Lab. for Cancer Research, Frederick, MD (United States)</creatorcontrib><title>Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.</description><subject>Accessibility</subject><subject>Automation</subject><subject>Biomolecular Systems</subject><subject>Combinatorial analysis</subject><subject>Conversion</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Kinases</subject><subject>Lipids</subject><subject>Modelling</subject><subject>Molecular dynamics</subject><subject>Proteins</subject><subject>Representations</subject><subject>Simulation</subject><subject>Stereochemistry</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPAyEUhSdGE2t175LoxoVTecwMzHLSWGvSxsTHmlCGKpWBCkxMf4D_W7TVhYkryOE793LvybJTBEcIYnQlZBitZJQjLCFEFdvLBqgs6ryucLX_e0fsMDsKYQUhIQUmg-yjCRsrX7yzrg_gXkm99k4KA8auXxttn4FbgrnwUVsN8AgnXfig8hsvtFUtELYF42lzP5-TCjTG5E10HXjQXW9E1M4GoG2CQNMnXcTkmPcm6pBaKDDxolPvzr8eZwdLYYI62Z3D7Gly_Tie5rO7m9txM8tFgWDMUSUKtVB4ASlhdZqyrtuyRRhi1iJKi5IKqcqSIdSSiqpqQbAkGCZVigVGBRlmZ9u6LkTNg9RRyRfprFUycsRYSUqYoIstlDbx1qsQeZf-q4wRVqUlcVzVhDLISpbQ8z_oyvXephE4phDSGjFCEwW3lPQuBK-WfO11J_yGI8i_wuMpPP4VHt-FlyyXW8v3y0_Nf_FPctCbqg</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>López, Cesar A.</creator><creator>Zhang, Xiaohua</creator><creator>Aydin, Fikret</creator><creator>Shrestha, Rebika</creator><creator>Van, Que N.</creator><creator>Stanley, Christopher B.</creator><creator>Carpenter, Timothy S.</creator><creator>Nguyen, Kien</creator><creator>Patel, Lara A.</creator><creator>Chen, De</creator><creator>Burns, Violetta</creator><creator>Hengartner, Nicolas W.</creator><creator>Reddy, Tyler J. E.</creator><creator>Bhatia, Harsh</creator><creator>Di Natale, Francesco</creator><creator>Tran, Timothy H.</creator><creator>Chan, Albert H.</creator><creator>Simanshu, Dhirendra K.</creator><creator>Nissley, Dwight V.</creator><creator>Streitz, Frederick H.</creator><creator>Stephen, Andrew G.</creator><creator>Turbyville, Thomas J.</creator><creator>Lightstone, Felice C.</creator><creator>Gnanakaran, Sandrasegaram</creator><creator>Ingólfsson, Helgi I.</creator><creator>Neale, Chris</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3237-8043</orcidid><orcidid>https://orcid.org/0000-0001-7523-116X</orcidid><orcidid>https://orcid.org/0000-0001-7848-9983</orcidid><orcidid>https://orcid.org/0000-0001-8712-7773</orcidid><orcidid>https://orcid.org/0000-0001-9912-078X</orcidid><orcidid>https://orcid.org/0000-0002-9368-3044</orcidid><orcidid>https://orcid.org/0000-0002-4226-7710</orcidid><orcidid>https://orcid.org/000000024157134X</orcidid><orcidid>https://orcid.org/0000000293683044</orcidid><orcidid>https://orcid.org/0000000317042445</orcidid><orcidid>https://orcid.org/0000000323646157</orcidid><orcidid>https://orcid.org/0000000178489983</orcidid><orcidid>https://orcid.org/0000000332378043</orcidid><orcidid>https://orcid.org/000000019912078X</orcidid><orcidid>https://orcid.org/0000000187127773</orcidid><orcidid>https://orcid.org/000000017523116X</orcidid><orcidid>https://orcid.org/0000000346843364</orcidid><orcidid>https://orcid.org/0000000242267710</orcidid></search><sort><creationdate>20220809</creationdate><title>Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework</title><author>López, Cesar A. ; Zhang, Xiaohua ; Aydin, Fikret ; Shrestha, Rebika ; Van, Que N. ; Stanley, Christopher B. ; Carpenter, Timothy S. ; Nguyen, Kien ; Patel, Lara A. ; Chen, De ; Burns, Violetta ; Hengartner, Nicolas W. ; Reddy, Tyler J. E. ; Bhatia, Harsh ; Di Natale, Francesco ; Tran, Timothy H. ; Chan, Albert H. ; Simanshu, Dhirendra K. ; Nissley, Dwight V. ; Streitz, Frederick H. ; Stephen, Andrew G. ; Turbyville, Thomas J. ; Lightstone, Felice C. ; Gnanakaran, Sandrasegaram ; Ingólfsson, Helgi I. ; Neale, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-16a4ebe2b0738901699d5d12028d177457ace55811d367e6b32c3207accab2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accessibility</topic><topic>Automation</topic><topic>Biomolecular Systems</topic><topic>Combinatorial analysis</topic><topic>Conversion</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Kinases</topic><topic>Lipids</topic><topic>Modelling</topic><topic>Molecular dynamics</topic><topic>Proteins</topic><topic>Representations</topic><topic>Simulation</topic><topic>Stereochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Cesar A.</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Aydin, Fikret</creatorcontrib><creatorcontrib>Shrestha, Rebika</creatorcontrib><creatorcontrib>Van, Que N.</creatorcontrib><creatorcontrib>Stanley, Christopher B.</creatorcontrib><creatorcontrib>Carpenter, Timothy S.</creatorcontrib><creatorcontrib>Nguyen, Kien</creatorcontrib><creatorcontrib>Patel, Lara A.</creatorcontrib><creatorcontrib>Chen, De</creatorcontrib><creatorcontrib>Burns, Violetta</creatorcontrib><creatorcontrib>Hengartner, Nicolas W.</creatorcontrib><creatorcontrib>Reddy, Tyler J. E.</creatorcontrib><creatorcontrib>Bhatia, Harsh</creatorcontrib><creatorcontrib>Di Natale, Francesco</creatorcontrib><creatorcontrib>Tran, Timothy H.</creatorcontrib><creatorcontrib>Chan, Albert H.</creatorcontrib><creatorcontrib>Simanshu, Dhirendra K.</creatorcontrib><creatorcontrib>Nissley, Dwight V.</creatorcontrib><creatorcontrib>Streitz, Frederick H.</creatorcontrib><creatorcontrib>Stephen, Andrew G.</creatorcontrib><creatorcontrib>Turbyville, Thomas J.</creatorcontrib><creatorcontrib>Lightstone, Felice C.</creatorcontrib><creatorcontrib>Gnanakaran, Sandrasegaram</creatorcontrib><creatorcontrib>Ingólfsson, Helgi I.</creatorcontrib><creatorcontrib>Neale, Chris</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Frederick National Lab. for Cancer Research, Frederick, MD (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Cesar A.</au><au>Zhang, Xiaohua</au><au>Aydin, Fikret</au><au>Shrestha, Rebika</au><au>Van, Que N.</au><au>Stanley, Christopher B.</au><au>Carpenter, Timothy S.</au><au>Nguyen, Kien</au><au>Patel, Lara A.</au><au>Chen, De</au><au>Burns, Violetta</au><au>Hengartner, Nicolas W.</au><au>Reddy, Tyler J. E.</au><au>Bhatia, Harsh</au><au>Di Natale, Francesco</au><au>Tran, Timothy H.</au><au>Chan, Albert H.</au><au>Simanshu, Dhirendra K.</au><au>Nissley, Dwight V.</au><au>Streitz, Frederick H.</au><au>Stephen, Andrew G.</au><au>Turbyville, Thomas J.</au><au>Lightstone, Felice C.</au><au>Gnanakaran, Sandrasegaram</au><au>Ingólfsson, Helgi I.</au><au>Neale, Chris</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Frederick National Lab. for Cancer Research, Frederick, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-08-09</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>5025</spage><epage>5045</epage><pages>5025-5045</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jctc.2c00168</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3237-8043</orcidid><orcidid>https://orcid.org/0000-0001-7523-116X</orcidid><orcidid>https://orcid.org/0000-0001-7848-9983</orcidid><orcidid>https://orcid.org/0000-0001-8712-7773</orcidid><orcidid>https://orcid.org/0000-0001-9912-078X</orcidid><orcidid>https://orcid.org/0000-0002-9368-3044</orcidid><orcidid>https://orcid.org/0000-0002-4226-7710</orcidid><orcidid>https://orcid.org/000000024157134X</orcidid><orcidid>https://orcid.org/0000000293683044</orcidid><orcidid>https://orcid.org/0000000317042445</orcidid><orcidid>https://orcid.org/0000000323646157</orcidid><orcidid>https://orcid.org/0000000178489983</orcidid><orcidid>https://orcid.org/0000000332378043</orcidid><orcidid>https://orcid.org/000000019912078X</orcidid><orcidid>https://orcid.org/0000000187127773</orcidid><orcidid>https://orcid.org/000000017523116X</orcidid><orcidid>https://orcid.org/0000000346843364</orcidid><orcidid>https://orcid.org/0000000242267710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-08, Vol.18 (8), p.5025-5045 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_osti_scitechconnect_1885350 |
source | American Chemical Society Journals |
subjects | Accessibility Automation Biomolecular Systems Combinatorial analysis Conversion INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kinases Lipids Modelling Molecular dynamics Proteins Representations Simulation Stereochemistry |
title | Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asynchronous%20Reciprocal%20Coupling%20of%20Martini%202.2%20Coarse-Grained%20and%20CHARMM36%20All-Atom%20Simulations%20in%20an%20Automated%20Multiscale%20Framework&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Lo%CC%81pez,%20Cesar%20A.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-08-09&rft.volume=18&rft.issue=8&rft.spage=5025&rft.epage=5045&rft.pages=5025-5045&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00168&rft_dat=%3Cproquest_osti_%3E2693780858%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700791837&rft_id=info:pmid/&rfr_iscdi=true |