Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions
A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Var...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-08, Vol.14 (32), p.36731-36740 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36740 |
---|---|
container_issue | 32 |
container_start_page | 36731 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Berlinger, Sarah A. Chowdhury, Anamika Van Cleve, Tim He, Aaron Dagan, Nicholas Neyerlin, Kenneth C. McCloskey, Bryan D. Radke, Clayton J. Weber, Adam Z. |
description | A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices. |
doi_str_mv | 10.1021/acsami.2c10499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1883202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697368590</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</originalsourceid><addsrcrecordid>eNp1kcFOwzAMhisEEmNw5RxxQkjd0rRpG26oYjBpEjvAOXLSdMtok5Gkh709QUXcOFi27M-27D9JbjO8yDDJliA9DHpBZIYLxs6SWcaKIq0JJed_cVFcJlfeHzAuc4LpLBnXwxFkQLZD2x6CNuOAtk4P4E5oCy5o2Su0sdBqs0PWoNWoetSovkdb5TrrBjBSPaK18Xq3Dx51zg6ogQD9yYfl2ho7KBfLn9GCcnGVtsZfJxcd9F7d_Pp58rF6fm9e083by7p52qSQV0VIqw4gIzmphSwFo6zqcgGKUlmQVrCqAqFES2kpJC2ruiUta3Elylp0ihalFPk8uZvmWh8091IHJffSGqNk4Fldxx-QCN1P0NHZr1H5wAftZTwRjLKj56RkVV7WlOGILiZUOuu9Ux0_Tr_iGeY_IvBJBP4rQmx4mBpinh_s6Ew89z_4G_Rpixs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697368590</pqid></control><display><type>article</type><title>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</title><source>American Chemical Society Journals</source><creator>Berlinger, Sarah A. ; Chowdhury, Anamika ; Van Cleve, Tim ; He, Aaron ; Dagan, Nicholas ; Neyerlin, Kenneth C. ; McCloskey, Bryan D. ; Radke, Clayton J. ; Weber, Adam Z.</creator><creatorcontrib>Berlinger, Sarah A. ; Chowdhury, Anamika ; Van Cleve, Tim ; He, Aaron ; Dagan, Nicholas ; Neyerlin, Kenneth C. ; McCloskey, Bryan D. ; Radke, Clayton J. ; Weber, Adam Z. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c10499</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>30 DIRECT ENERGY CONVERSION ; colloidal interactions ; electrode fabrication ; Energy, Environmental, and Catalysis Applications ; inks ; Nafion ; platinum ; polymer electrolyte fuel cell</subject><ispartof>ACS applied materials & interfaces, 2022-08, Vol.14 (32), p.36731-36740</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</citedby><cites>FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</cites><orcidid>0000-0002-0544-6963 ; 0000-0001-7233-5844 ; 0000-0001-6599-2336 ; 0000-0002-7749-1624 ; 0000-0002-1587-4822 ; 0000-0002-6753-9698 ; 0000000205446963 ; 0000000165992336 ; 0000000277491624 ; 0000000267539698 ; 0000000172335844 ; 0000000215874822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c10499$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c10499$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1883202$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Berlinger, Sarah A.</creatorcontrib><creatorcontrib>Chowdhury, Anamika</creatorcontrib><creatorcontrib>Van Cleve, Tim</creatorcontrib><creatorcontrib>He, Aaron</creatorcontrib><creatorcontrib>Dagan, Nicholas</creatorcontrib><creatorcontrib>Neyerlin, Kenneth C.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Radke, Clayton J.</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>colloidal interactions</subject><subject>electrode fabrication</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>inks</subject><subject>Nafion</subject><subject>platinum</subject><subject>polymer electrolyte fuel cell</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFOwzAMhisEEmNw5RxxQkjd0rRpG26oYjBpEjvAOXLSdMtok5Gkh709QUXcOFi27M-27D9JbjO8yDDJliA9DHpBZIYLxs6SWcaKIq0JJed_cVFcJlfeHzAuc4LpLBnXwxFkQLZD2x6CNuOAtk4P4E5oCy5o2Su0sdBqs0PWoNWoetSovkdb5TrrBjBSPaK18Xq3Dx51zg6ogQD9yYfl2ho7KBfLn9GCcnGVtsZfJxcd9F7d_Pp58rF6fm9e083by7p52qSQV0VIqw4gIzmphSwFo6zqcgGKUlmQVrCqAqFES2kpJC2ruiUta3Elylp0ihalFPk8uZvmWh8091IHJffSGqNk4Fldxx-QCN1P0NHZr1H5wAftZTwRjLKj56RkVV7WlOGILiZUOuu9Ux0_Tr_iGeY_IvBJBP4rQmx4mBpinh_s6Ew89z_4G_Rpixs</recordid><startdate>20220817</startdate><enddate>20220817</enddate><creator>Berlinger, Sarah A.</creator><creator>Chowdhury, Anamika</creator><creator>Van Cleve, Tim</creator><creator>He, Aaron</creator><creator>Dagan, Nicholas</creator><creator>Neyerlin, Kenneth C.</creator><creator>McCloskey, Bryan D.</creator><creator>Radke, Clayton J.</creator><creator>Weber, Adam Z.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0544-6963</orcidid><orcidid>https://orcid.org/0000-0001-7233-5844</orcidid><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid><orcidid>https://orcid.org/0000-0002-1587-4822</orcidid><orcidid>https://orcid.org/0000-0002-6753-9698</orcidid><orcidid>https://orcid.org/0000000205446963</orcidid><orcidid>https://orcid.org/0000000165992336</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000267539698</orcidid><orcidid>https://orcid.org/0000000172335844</orcidid><orcidid>https://orcid.org/0000000215874822</orcidid></search><sort><creationdate>20220817</creationdate><title>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</title><author>Berlinger, Sarah A. ; Chowdhury, Anamika ; Van Cleve, Tim ; He, Aaron ; Dagan, Nicholas ; Neyerlin, Kenneth C. ; McCloskey, Bryan D. ; Radke, Clayton J. ; Weber, Adam Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>colloidal interactions</topic><topic>electrode fabrication</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>inks</topic><topic>Nafion</topic><topic>platinum</topic><topic>polymer electrolyte fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berlinger, Sarah A.</creatorcontrib><creatorcontrib>Chowdhury, Anamika</creatorcontrib><creatorcontrib>Van Cleve, Tim</creatorcontrib><creatorcontrib>He, Aaron</creatorcontrib><creatorcontrib>Dagan, Nicholas</creatorcontrib><creatorcontrib>Neyerlin, Kenneth C.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Radke, Clayton J.</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berlinger, Sarah A.</au><au>Chowdhury, Anamika</au><au>Van Cleve, Tim</au><au>He, Aaron</au><au>Dagan, Nicholas</au><au>Neyerlin, Kenneth C.</au><au>McCloskey, Bryan D.</au><au>Radke, Clayton J.</au><au>Weber, Adam Z.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-08-17</date><risdate>2022</risdate><volume>14</volume><issue>32</issue><spage>36731</spage><epage>36740</epage><pages>36731-36740</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsami.2c10499</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0544-6963</orcidid><orcidid>https://orcid.org/0000-0001-7233-5844</orcidid><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid><orcidid>https://orcid.org/0000-0002-1587-4822</orcidid><orcidid>https://orcid.org/0000-0002-6753-9698</orcidid><orcidid>https://orcid.org/0000000205446963</orcidid><orcidid>https://orcid.org/0000000165992336</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000267539698</orcidid><orcidid>https://orcid.org/0000000172335844</orcidid><orcidid>https://orcid.org/0000000215874822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-08, Vol.14 (32), p.36731-36740 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1883202 |
source | American Chemical Society Journals |
subjects | 30 DIRECT ENERGY CONVERSION colloidal interactions electrode fabrication Energy, Environmental, and Catalysis Applications inks Nafion platinum polymer electrolyte fuel cell |
title | Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Platinum%20Primary%20Particle%20Loading%20on%20Fuel%20Cell%20Performance:%20Insights%20from%20Catalyst/Ionomer%20Ink%20Interactions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Berlinger,%20Sarah%20A.&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-08-17&rft.volume=14&rft.issue=32&rft.spage=36731&rft.epage=36740&rft.pages=36731-36740&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c10499&rft_dat=%3Cproquest_osti_%3E2697368590%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697368590&rft_id=info:pmid/&rfr_iscdi=true |