Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions

A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-08, Vol.14 (32), p.36731-36740
Hauptverfasser: Berlinger, Sarah A., Chowdhury, Anamika, Van Cleve, Tim, He, Aaron, Dagan, Nicholas, Neyerlin, Kenneth C., McCloskey, Bryan D., Radke, Clayton J., Weber, Adam Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36740
container_issue 32
container_start_page 36731
container_title ACS applied materials & interfaces
container_volume 14
creator Berlinger, Sarah A.
Chowdhury, Anamika
Van Cleve, Tim
He, Aaron
Dagan, Nicholas
Neyerlin, Kenneth C.
McCloskey, Bryan D.
Radke, Clayton J.
Weber, Adam Z.
description A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.
doi_str_mv 10.1021/acsami.2c10499
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1883202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697368590</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</originalsourceid><addsrcrecordid>eNp1kcFOwzAMhisEEmNw5RxxQkjd0rRpG26oYjBpEjvAOXLSdMtok5Gkh709QUXcOFi27M-27D9JbjO8yDDJliA9DHpBZIYLxs6SWcaKIq0JJed_cVFcJlfeHzAuc4LpLBnXwxFkQLZD2x6CNuOAtk4P4E5oCy5o2Su0sdBqs0PWoNWoetSovkdb5TrrBjBSPaK18Xq3Dx51zg6ogQD9yYfl2ho7KBfLn9GCcnGVtsZfJxcd9F7d_Pp58rF6fm9e083by7p52qSQV0VIqw4gIzmphSwFo6zqcgGKUlmQVrCqAqFES2kpJC2ruiUta3Elylp0ihalFPk8uZvmWh8091IHJffSGqNk4Fldxx-QCN1P0NHZr1H5wAftZTwRjLKj56RkVV7WlOGILiZUOuu9Ux0_Tr_iGeY_IvBJBP4rQmx4mBpinh_s6Ew89z_4G_Rpixs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697368590</pqid></control><display><type>article</type><title>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</title><source>American Chemical Society Journals</source><creator>Berlinger, Sarah A. ; Chowdhury, Anamika ; Van Cleve, Tim ; He, Aaron ; Dagan, Nicholas ; Neyerlin, Kenneth C. ; McCloskey, Bryan D. ; Radke, Clayton J. ; Weber, Adam Z.</creator><creatorcontrib>Berlinger, Sarah A. ; Chowdhury, Anamika ; Van Cleve, Tim ; He, Aaron ; Dagan, Nicholas ; Neyerlin, Kenneth C. ; McCloskey, Bryan D. ; Radke, Clayton J. ; Weber, Adam Z. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c10499</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>30 DIRECT ENERGY CONVERSION ; colloidal interactions ; electrode fabrication ; Energy, Environmental, and Catalysis Applications ; inks ; Nafion ; platinum ; polymer electrolyte fuel cell</subject><ispartof>ACS applied materials &amp; interfaces, 2022-08, Vol.14 (32), p.36731-36740</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</citedby><cites>FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</cites><orcidid>0000-0002-0544-6963 ; 0000-0001-7233-5844 ; 0000-0001-6599-2336 ; 0000-0002-7749-1624 ; 0000-0002-1587-4822 ; 0000-0002-6753-9698 ; 0000000205446963 ; 0000000165992336 ; 0000000277491624 ; 0000000267539698 ; 0000000172335844 ; 0000000215874822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c10499$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c10499$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1883202$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Berlinger, Sarah A.</creatorcontrib><creatorcontrib>Chowdhury, Anamika</creatorcontrib><creatorcontrib>Van Cleve, Tim</creatorcontrib><creatorcontrib>He, Aaron</creatorcontrib><creatorcontrib>Dagan, Nicholas</creatorcontrib><creatorcontrib>Neyerlin, Kenneth C.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Radke, Clayton J.</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>colloidal interactions</subject><subject>electrode fabrication</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>inks</subject><subject>Nafion</subject><subject>platinum</subject><subject>polymer electrolyte fuel cell</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFOwzAMhisEEmNw5RxxQkjd0rRpG26oYjBpEjvAOXLSdMtok5Gkh709QUXcOFi27M-27D9JbjO8yDDJliA9DHpBZIYLxs6SWcaKIq0JJed_cVFcJlfeHzAuc4LpLBnXwxFkQLZD2x6CNuOAtk4P4E5oCy5o2Su0sdBqs0PWoNWoetSovkdb5TrrBjBSPaK18Xq3Dx51zg6ogQD9yYfl2ho7KBfLn9GCcnGVtsZfJxcd9F7d_Pp58rF6fm9e083by7p52qSQV0VIqw4gIzmphSwFo6zqcgGKUlmQVrCqAqFES2kpJC2ruiUta3Elylp0ihalFPk8uZvmWh8091IHJffSGqNk4Fldxx-QCN1P0NHZr1H5wAftZTwRjLKj56RkVV7WlOGILiZUOuu9Ux0_Tr_iGeY_IvBJBP4rQmx4mBpinh_s6Ew89z_4G_Rpixs</recordid><startdate>20220817</startdate><enddate>20220817</enddate><creator>Berlinger, Sarah A.</creator><creator>Chowdhury, Anamika</creator><creator>Van Cleve, Tim</creator><creator>He, Aaron</creator><creator>Dagan, Nicholas</creator><creator>Neyerlin, Kenneth C.</creator><creator>McCloskey, Bryan D.</creator><creator>Radke, Clayton J.</creator><creator>Weber, Adam Z.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0544-6963</orcidid><orcidid>https://orcid.org/0000-0001-7233-5844</orcidid><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid><orcidid>https://orcid.org/0000-0002-1587-4822</orcidid><orcidid>https://orcid.org/0000-0002-6753-9698</orcidid><orcidid>https://orcid.org/0000000205446963</orcidid><orcidid>https://orcid.org/0000000165992336</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000267539698</orcidid><orcidid>https://orcid.org/0000000172335844</orcidid><orcidid>https://orcid.org/0000000215874822</orcidid></search><sort><creationdate>20220817</creationdate><title>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</title><author>Berlinger, Sarah A. ; Chowdhury, Anamika ; Van Cleve, Tim ; He, Aaron ; Dagan, Nicholas ; Neyerlin, Kenneth C. ; McCloskey, Bryan D. ; Radke, Clayton J. ; Weber, Adam Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-7faa12328bc6b9597f3bae55c42db977abebd556bc5678d2d9d07b68bfe546cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>colloidal interactions</topic><topic>electrode fabrication</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>inks</topic><topic>Nafion</topic><topic>platinum</topic><topic>polymer electrolyte fuel cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berlinger, Sarah A.</creatorcontrib><creatorcontrib>Chowdhury, Anamika</creatorcontrib><creatorcontrib>Van Cleve, Tim</creatorcontrib><creatorcontrib>He, Aaron</creatorcontrib><creatorcontrib>Dagan, Nicholas</creatorcontrib><creatorcontrib>Neyerlin, Kenneth C.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>Radke, Clayton J.</creatorcontrib><creatorcontrib>Weber, Adam Z.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berlinger, Sarah A.</au><au>Chowdhury, Anamika</au><au>Van Cleve, Tim</au><au>He, Aaron</au><au>Dagan, Nicholas</au><au>Neyerlin, Kenneth C.</au><au>McCloskey, Bryan D.</au><au>Radke, Clayton J.</au><au>Weber, Adam Z.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-08-17</date><risdate>2022</risdate><volume>14</volume><issue>32</issue><spage>36731</spage><epage>36740</epage><pages>36731-36740</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon–platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst–particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsami.2c10499</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0544-6963</orcidid><orcidid>https://orcid.org/0000-0001-7233-5844</orcidid><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000-0002-7749-1624</orcidid><orcidid>https://orcid.org/0000-0002-1587-4822</orcidid><orcidid>https://orcid.org/0000-0002-6753-9698</orcidid><orcidid>https://orcid.org/0000000205446963</orcidid><orcidid>https://orcid.org/0000000165992336</orcidid><orcidid>https://orcid.org/0000000277491624</orcidid><orcidid>https://orcid.org/0000000267539698</orcidid><orcidid>https://orcid.org/0000000172335844</orcidid><orcidid>https://orcid.org/0000000215874822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-08, Vol.14 (32), p.36731-36740
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1883202
source American Chemical Society Journals
subjects 30 DIRECT ENERGY CONVERSION
colloidal interactions
electrode fabrication
Energy, Environmental, and Catalysis Applications
inks
Nafion
platinum
polymer electrolyte fuel cell
title Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Platinum%20Primary%20Particle%20Loading%20on%20Fuel%20Cell%20Performance:%20Insights%20from%20Catalyst/Ionomer%20Ink%20Interactions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Berlinger,%20Sarah%20A.&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-08-17&rft.volume=14&rft.issue=32&rft.spage=36731&rft.epage=36740&rft.pages=36731-36740&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c10499&rft_dat=%3Cproquest_osti_%3E2697368590%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697368590&rft_id=info:pmid/&rfr_iscdi=true