Approaching air buoyancy in aero/cryogel vacuum vessels
Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to i...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022-08, Vol.57 (30), p.14287-14296 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14296 |
---|---|
container_issue | 30 |
container_start_page | 14287 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Beaux, Miles F. Hass, Jamie L. Hanson, Christina J. Edwards, Stephanie L. Edgar, Alexander S. Vodnik, Douglas R. Bennett, Bryan L. Siller, Victor P. Kuettner, Lindsey A. Patterson, Brian M. Jones, Benjamin J. Hamilton, Christopher E. |
description | Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm
−3
. It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed. |
doi_str_mv | 10.1007/s10853-022-07540-x |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1881814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712520364</galeid><sourcerecordid>A712520364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-e4567447369bbe3e9e6cdc396c6601c3f1f142b6edbc295fab7dcb274cda8e8a3</originalsourceid><addsrcrecordid>eNp9kU9r20AQxZfSQF0nX6An0Z56ULL_Vzoa06aBQKFJzstqNJI32Fp3Vwr2t-86KgRfwhwGZn7vMcMj5Auj14xSc5MYrZQoKeclNUrS8vCBLJgyopQVFR_Jgp5WXGr2iXxO6ZlSqgxnC2JW-30MDjZ-6AvnY9FM4egGOBZ-KBzGcAPxGHrcFi8OpmlXvGBKuE2X5KJz24RX__uSPP388bj-Vd7_vr1br-5LkEyOJUqljZRG6LppUGCNGloQtQatKQPRsY5J3mhsG-C16lxjWmi4kdC6CisnluTr7BvS6G0CPyJsIAwDwmhZVbGKyQx9m6H8yt8J02ifwxSHfJflujaKq1qxTF3PVO-2aP3QhTE6yNXizmdL7HyerwzjilOhT7bfzwSZGfEw9m5Kyd49_Dln-cxCDClF7Ow--p2LR8uoPUVk54hszsG-RmQPWSRmUcrw0GN8u_sd1T_DU5K2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697525951</pqid></control><display><type>article</type><title>Approaching air buoyancy in aero/cryogel vacuum vessels</title><source>SpringerNature Journals</source><creator>Beaux, Miles F. ; Hass, Jamie L. ; Hanson, Christina J. ; Edwards, Stephanie L. ; Edgar, Alexander S. ; Vodnik, Douglas R. ; Bennett, Bryan L. ; Siller, Victor P. ; Kuettner, Lindsey A. ; Patterson, Brian M. ; Jones, Benjamin J. ; Hamilton, Christopher E.</creator><creatorcontrib>Beaux, Miles F. ; Hass, Jamie L. ; Hanson, Christina J. ; Edwards, Stephanie L. ; Edgar, Alexander S. ; Vodnik, Douglas R. ; Bennett, Bryan L. ; Siller, Victor P. ; Kuettner, Lindsey A. ; Patterson, Brian M. ; Jones, Benjamin J. ; Hamilton, Christopher E. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm
−3
. It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07540-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Buoyancy ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Crystallography and Scattering Methods ; Density ; Internet resources ; MATERIALS SCIENCE ; Mechanical tests ; Permeability ; Polyethylene ; Polymer Sciences ; Porosity ; Porous materials ; Silica ; Silica aerogels ; Solid Mechanics ; Solvents ; Spherical shells ; Stiffness ; Vessels</subject><ispartof>Journal of materials science, 2022-08, Vol.57 (30), p.14287-14296</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c414t-e4567447369bbe3e9e6cdc396c6601c3f1f142b6edbc295fab7dcb274cda8e8a3</cites><orcidid>0000-0003-2192-626X ; 0000000341455899 ; 0000000297193683 ; 0000000194355969 ; 0000000196054123 ; 0000000182862904 ; 0000000216055992 ; 000000032192626X ; 0000000192447376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07540-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07540-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1881814$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaux, Miles F.</creatorcontrib><creatorcontrib>Hass, Jamie L.</creatorcontrib><creatorcontrib>Hanson, Christina J.</creatorcontrib><creatorcontrib>Edwards, Stephanie L.</creatorcontrib><creatorcontrib>Edgar, Alexander S.</creatorcontrib><creatorcontrib>Vodnik, Douglas R.</creatorcontrib><creatorcontrib>Bennett, Bryan L.</creatorcontrib><creatorcontrib>Siller, Victor P.</creatorcontrib><creatorcontrib>Kuettner, Lindsey A.</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Jones, Benjamin J.</creatorcontrib><creatorcontrib>Hamilton, Christopher E.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Approaching air buoyancy in aero/cryogel vacuum vessels</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm
−3
. It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.</description><subject>Buoyancy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Internet resources</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical tests</subject><subject>Permeability</subject><subject>Polyethylene</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Silica</subject><subject>Silica aerogels</subject><subject>Solid Mechanics</subject><subject>Solvents</subject><subject>Spherical shells</subject><subject>Stiffness</subject><subject>Vessels</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9r20AQxZfSQF0nX6An0Z56ULL_Vzoa06aBQKFJzstqNJI32Fp3Vwr2t-86KgRfwhwGZn7vMcMj5Auj14xSc5MYrZQoKeclNUrS8vCBLJgyopQVFR_Jgp5WXGr2iXxO6ZlSqgxnC2JW-30MDjZ-6AvnY9FM4egGOBZ-KBzGcAPxGHrcFi8OpmlXvGBKuE2X5KJz24RX__uSPP388bj-Vd7_vr1br-5LkEyOJUqljZRG6LppUGCNGloQtQatKQPRsY5J3mhsG-C16lxjWmi4kdC6CisnluTr7BvS6G0CPyJsIAwDwmhZVbGKyQx9m6H8yt8J02ifwxSHfJflujaKq1qxTF3PVO-2aP3QhTE6yNXizmdL7HyerwzjilOhT7bfzwSZGfEw9m5Kyd49_Dln-cxCDClF7Ow--p2LR8uoPUVk54hszsG-RmQPWSRmUcrw0GN8u_sd1T_DU5K2</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Beaux, Miles F.</creator><creator>Hass, Jamie L.</creator><creator>Hanson, Christina J.</creator><creator>Edwards, Stephanie L.</creator><creator>Edgar, Alexander S.</creator><creator>Vodnik, Douglas R.</creator><creator>Bennett, Bryan L.</creator><creator>Siller, Victor P.</creator><creator>Kuettner, Lindsey A.</creator><creator>Patterson, Brian M.</creator><creator>Jones, Benjamin J.</creator><creator>Hamilton, Christopher E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2192-626X</orcidid><orcidid>https://orcid.org/0000000341455899</orcidid><orcidid>https://orcid.org/0000000297193683</orcidid><orcidid>https://orcid.org/0000000194355969</orcidid><orcidid>https://orcid.org/0000000196054123</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000216055992</orcidid><orcidid>https://orcid.org/000000032192626X</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid></search><sort><creationdate>20220801</creationdate><title>Approaching air buoyancy in aero/cryogel vacuum vessels</title><author>Beaux, Miles F. ; Hass, Jamie L. ; Hanson, Christina J. ; Edwards, Stephanie L. ; Edgar, Alexander S. ; Vodnik, Douglas R. ; Bennett, Bryan L. ; Siller, Victor P. ; Kuettner, Lindsey A. ; Patterson, Brian M. ; Jones, Benjamin J. ; Hamilton, Christopher E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-e4567447369bbe3e9e6cdc396c6601c3f1f142b6edbc295fab7dcb274cda8e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Buoyancy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Internet resources</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical tests</topic><topic>Permeability</topic><topic>Polyethylene</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Silica</topic><topic>Silica aerogels</topic><topic>Solid Mechanics</topic><topic>Solvents</topic><topic>Spherical shells</topic><topic>Stiffness</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaux, Miles F.</creatorcontrib><creatorcontrib>Hass, Jamie L.</creatorcontrib><creatorcontrib>Hanson, Christina J.</creatorcontrib><creatorcontrib>Edwards, Stephanie L.</creatorcontrib><creatorcontrib>Edgar, Alexander S.</creatorcontrib><creatorcontrib>Vodnik, Douglas R.</creatorcontrib><creatorcontrib>Bennett, Bryan L.</creatorcontrib><creatorcontrib>Siller, Victor P.</creatorcontrib><creatorcontrib>Kuettner, Lindsey A.</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Jones, Benjamin J.</creatorcontrib><creatorcontrib>Hamilton, Christopher E.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaux, Miles F.</au><au>Hass, Jamie L.</au><au>Hanson, Christina J.</au><au>Edwards, Stephanie L.</au><au>Edgar, Alexander S.</au><au>Vodnik, Douglas R.</au><au>Bennett, Bryan L.</au><au>Siller, Victor P.</au><au>Kuettner, Lindsey A.</au><au>Patterson, Brian M.</au><au>Jones, Benjamin J.</au><au>Hamilton, Christopher E.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching air buoyancy in aero/cryogel vacuum vessels</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>57</volume><issue>30</issue><spage>14287</spage><epage>14296</epage><pages>14287-14296</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm
−3
. It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07540-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2192-626X</orcidid><orcidid>https://orcid.org/0000000341455899</orcidid><orcidid>https://orcid.org/0000000297193683</orcidid><orcidid>https://orcid.org/0000000194355969</orcidid><orcidid>https://orcid.org/0000000196054123</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000216055992</orcidid><orcidid>https://orcid.org/000000032192626X</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022-08, Vol.57 (30), p.14287-14296 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_osti_scitechconnect_1881814 |
source | SpringerNature Journals |
subjects | Buoyancy Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Composite materials Crystallography and Scattering Methods Density Internet resources MATERIALS SCIENCE Mechanical tests Permeability Polyethylene Polymer Sciences Porosity Porous materials Silica Silica aerogels Solid Mechanics Solvents Spherical shells Stiffness Vessels |
title | Approaching air buoyancy in aero/cryogel vacuum vessels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20air%20buoyancy%20in%20aero/cryogel%20vacuum%20vessels&rft.jtitle=Journal%20of%20materials%20science&rft.au=Beaux,%20Miles%20F.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-08-01&rft.volume=57&rft.issue=30&rft.spage=14287&rft.epage=14296&rft.pages=14287-14296&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07540-x&rft_dat=%3Cgale_osti_%3EA712520364%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697525951&rft_id=info:pmid/&rft_galeid=A712520364&rfr_iscdi=true |