Approaching air buoyancy in aero/cryogel vacuum vessels

Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022-08, Vol.57 (30), p.14287-14296
Hauptverfasser: Beaux, Miles F., Hass, Jamie L., Hanson, Christina J., Edwards, Stephanie L., Edgar, Alexander S., Vodnik, Douglas R., Bennett, Bryan L., Siller, Victor P., Kuettner, Lindsey A., Patterson, Brian M., Jones, Benjamin J., Hamilton, Christopher E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14296
container_issue 30
container_start_page 14287
container_title Journal of materials science
container_volume 57
creator Beaux, Miles F.
Hass, Jamie L.
Hanson, Christina J.
Edwards, Stephanie L.
Edgar, Alexander S.
Vodnik, Douglas R.
Bennett, Bryan L.
Siller, Victor P.
Kuettner, Lindsey A.
Patterson, Brian M.
Jones, Benjamin J.
Hamilton, Christopher E.
description Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm −3 . It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.
doi_str_mv 10.1007/s10853-022-07540-x
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1881814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712520364</galeid><sourcerecordid>A712520364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-e4567447369bbe3e9e6cdc396c6601c3f1f142b6edbc295fab7dcb274cda8e8a3</originalsourceid><addsrcrecordid>eNp9kU9r20AQxZfSQF0nX6An0Z56ULL_Vzoa06aBQKFJzstqNJI32Fp3Vwr2t-86KgRfwhwGZn7vMcMj5Auj14xSc5MYrZQoKeclNUrS8vCBLJgyopQVFR_Jgp5WXGr2iXxO6ZlSqgxnC2JW-30MDjZ-6AvnY9FM4egGOBZ-KBzGcAPxGHrcFi8OpmlXvGBKuE2X5KJz24RX__uSPP388bj-Vd7_vr1br-5LkEyOJUqljZRG6LppUGCNGloQtQatKQPRsY5J3mhsG-C16lxjWmi4kdC6CisnluTr7BvS6G0CPyJsIAwDwmhZVbGKyQx9m6H8yt8J02ifwxSHfJflujaKq1qxTF3PVO-2aP3QhTE6yNXizmdL7HyerwzjilOhT7bfzwSZGfEw9m5Kyd49_Dln-cxCDClF7Ow--p2LR8uoPUVk54hszsG-RmQPWSRmUcrw0GN8u_sd1T_DU5K2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697525951</pqid></control><display><type>article</type><title>Approaching air buoyancy in aero/cryogel vacuum vessels</title><source>SpringerNature Journals</source><creator>Beaux, Miles F. ; Hass, Jamie L. ; Hanson, Christina J. ; Edwards, Stephanie L. ; Edgar, Alexander S. ; Vodnik, Douglas R. ; Bennett, Bryan L. ; Siller, Victor P. ; Kuettner, Lindsey A. ; Patterson, Brian M. ; Jones, Benjamin J. ; Hamilton, Christopher E.</creator><creatorcontrib>Beaux, Miles F. ; Hass, Jamie L. ; Hanson, Christina J. ; Edwards, Stephanie L. ; Edgar, Alexander S. ; Vodnik, Douglas R. ; Bennett, Bryan L. ; Siller, Victor P. ; Kuettner, Lindsey A. ; Patterson, Brian M. ; Jones, Benjamin J. ; Hamilton, Christopher E. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm −3 . It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07540-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Buoyancy ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Crystallography and Scattering Methods ; Density ; Internet resources ; MATERIALS SCIENCE ; Mechanical tests ; Permeability ; Polyethylene ; Polymer Sciences ; Porosity ; Porous materials ; Silica ; Silica aerogels ; Solid Mechanics ; Solvents ; Spherical shells ; Stiffness ; Vessels</subject><ispartof>Journal of materials science, 2022-08, Vol.57 (30), p.14287-14296</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c414t-e4567447369bbe3e9e6cdc396c6601c3f1f142b6edbc295fab7dcb274cda8e8a3</cites><orcidid>0000-0003-2192-626X ; 0000000341455899 ; 0000000297193683 ; 0000000194355969 ; 0000000196054123 ; 0000000182862904 ; 0000000216055992 ; 000000032192626X ; 0000000192447376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07540-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07540-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1881814$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaux, Miles F.</creatorcontrib><creatorcontrib>Hass, Jamie L.</creatorcontrib><creatorcontrib>Hanson, Christina J.</creatorcontrib><creatorcontrib>Edwards, Stephanie L.</creatorcontrib><creatorcontrib>Edgar, Alexander S.</creatorcontrib><creatorcontrib>Vodnik, Douglas R.</creatorcontrib><creatorcontrib>Bennett, Bryan L.</creatorcontrib><creatorcontrib>Siller, Victor P.</creatorcontrib><creatorcontrib>Kuettner, Lindsey A.</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Jones, Benjamin J.</creatorcontrib><creatorcontrib>Hamilton, Christopher E.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Approaching air buoyancy in aero/cryogel vacuum vessels</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm −3 . It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.</description><subject>Buoyancy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Crystallography and Scattering Methods</subject><subject>Density</subject><subject>Internet resources</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical tests</subject><subject>Permeability</subject><subject>Polyethylene</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Silica</subject><subject>Silica aerogels</subject><subject>Solid Mechanics</subject><subject>Solvents</subject><subject>Spherical shells</subject><subject>Stiffness</subject><subject>Vessels</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9r20AQxZfSQF0nX6An0Z56ULL_Vzoa06aBQKFJzstqNJI32Fp3Vwr2t-86KgRfwhwGZn7vMcMj5Auj14xSc5MYrZQoKeclNUrS8vCBLJgyopQVFR_Jgp5WXGr2iXxO6ZlSqgxnC2JW-30MDjZ-6AvnY9FM4egGOBZ-KBzGcAPxGHrcFi8OpmlXvGBKuE2X5KJz24RX__uSPP388bj-Vd7_vr1br-5LkEyOJUqljZRG6LppUGCNGloQtQatKQPRsY5J3mhsG-C16lxjWmi4kdC6CisnluTr7BvS6G0CPyJsIAwDwmhZVbGKyQx9m6H8yt8J02ifwxSHfJflujaKq1qxTF3PVO-2aP3QhTE6yNXizmdL7HyerwzjilOhT7bfzwSZGfEw9m5Kyd49_Dln-cxCDClF7Ow--p2LR8uoPUVk54hszsG-RmQPWSRmUcrw0GN8u_sd1T_DU5K2</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Beaux, Miles F.</creator><creator>Hass, Jamie L.</creator><creator>Hanson, Christina J.</creator><creator>Edwards, Stephanie L.</creator><creator>Edgar, Alexander S.</creator><creator>Vodnik, Douglas R.</creator><creator>Bennett, Bryan L.</creator><creator>Siller, Victor P.</creator><creator>Kuettner, Lindsey A.</creator><creator>Patterson, Brian M.</creator><creator>Jones, Benjamin J.</creator><creator>Hamilton, Christopher E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2192-626X</orcidid><orcidid>https://orcid.org/0000000341455899</orcidid><orcidid>https://orcid.org/0000000297193683</orcidid><orcidid>https://orcid.org/0000000194355969</orcidid><orcidid>https://orcid.org/0000000196054123</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000216055992</orcidid><orcidid>https://orcid.org/000000032192626X</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid></search><sort><creationdate>20220801</creationdate><title>Approaching air buoyancy in aero/cryogel vacuum vessels</title><author>Beaux, Miles F. ; Hass, Jamie L. ; Hanson, Christina J. ; Edwards, Stephanie L. ; Edgar, Alexander S. ; Vodnik, Douglas R. ; Bennett, Bryan L. ; Siller, Victor P. ; Kuettner, Lindsey A. ; Patterson, Brian M. ; Jones, Benjamin J. ; Hamilton, Christopher E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-e4567447369bbe3e9e6cdc396c6601c3f1f142b6edbc295fab7dcb274cda8e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Buoyancy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Crystallography and Scattering Methods</topic><topic>Density</topic><topic>Internet resources</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical tests</topic><topic>Permeability</topic><topic>Polyethylene</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Silica</topic><topic>Silica aerogels</topic><topic>Solid Mechanics</topic><topic>Solvents</topic><topic>Spherical shells</topic><topic>Stiffness</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaux, Miles F.</creatorcontrib><creatorcontrib>Hass, Jamie L.</creatorcontrib><creatorcontrib>Hanson, Christina J.</creatorcontrib><creatorcontrib>Edwards, Stephanie L.</creatorcontrib><creatorcontrib>Edgar, Alexander S.</creatorcontrib><creatorcontrib>Vodnik, Douglas R.</creatorcontrib><creatorcontrib>Bennett, Bryan L.</creatorcontrib><creatorcontrib>Siller, Victor P.</creatorcontrib><creatorcontrib>Kuettner, Lindsey A.</creatorcontrib><creatorcontrib>Patterson, Brian M.</creatorcontrib><creatorcontrib>Jones, Benjamin J.</creatorcontrib><creatorcontrib>Hamilton, Christopher E.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaux, Miles F.</au><au>Hass, Jamie L.</au><au>Hanson, Christina J.</au><au>Edwards, Stephanie L.</au><au>Edgar, Alexander S.</au><au>Vodnik, Douglas R.</au><au>Bennett, Bryan L.</au><au>Siller, Victor P.</au><au>Kuettner, Lindsey A.</au><au>Patterson, Brian M.</au><au>Jones, Benjamin J.</au><au>Hamilton, Christopher E.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching air buoyancy in aero/cryogel vacuum vessels</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>57</volume><issue>30</issue><spage>14287</spage><epage>14296</epage><pages>14287-14296</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Air impermeability has been observed in low-density aerogel and cryogel materials, which has led to a series of experiments to investigate the feasibility of an air buoyant vacuum vessel, as well as the fabrication and testing of sub-buoyant prototypes. Bulk samples of silica aerogel were shown to isolate vacuum from ambient air for several hours with optimal vacuum isolation occurring at a density of approximately 85 mg cm −3 . It was demonstrated using polyimide aerogel and cryogel materials that the ability of these foam materials to provide an air impermeable layer between vacuum and atmosphere, in spite of being comprised of mostly void space, is related to material stiffness. It is hypothesized that this behavior is due to local deformation of the random nanostructure of the material. Spherical shell vacuum vessels were produced using the polyimide cryogel, and less than 133 Pa vacuum containment was demonstrated under active pumping. In order to approach the non-buoyant to buoyant transition for these vacuum vessels, a polyimide composite was produced using helical fibers for which preliminary mechanical testing was performed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07540-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2192-626X</orcidid><orcidid>https://orcid.org/0000000341455899</orcidid><orcidid>https://orcid.org/0000000297193683</orcidid><orcidid>https://orcid.org/0000000194355969</orcidid><orcidid>https://orcid.org/0000000196054123</orcidid><orcidid>https://orcid.org/0000000182862904</orcidid><orcidid>https://orcid.org/0000000216055992</orcidid><orcidid>https://orcid.org/000000032192626X</orcidid><orcidid>https://orcid.org/0000000192447376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022-08, Vol.57 (30), p.14287-14296
issn 0022-2461
1573-4803
language eng
recordid cdi_osti_scitechconnect_1881814
source SpringerNature Journals
subjects Buoyancy
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Composite materials
Crystallography and Scattering Methods
Density
Internet resources
MATERIALS SCIENCE
Mechanical tests
Permeability
Polyethylene
Polymer Sciences
Porosity
Porous materials
Silica
Silica aerogels
Solid Mechanics
Solvents
Spherical shells
Stiffness
Vessels
title Approaching air buoyancy in aero/cryogel vacuum vessels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20air%20buoyancy%20in%20aero/cryogel%20vacuum%20vessels&rft.jtitle=Journal%20of%20materials%20science&rft.au=Beaux,%20Miles%20F.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-08-01&rft.volume=57&rft.issue=30&rft.spage=14287&rft.epage=14296&rft.pages=14287-14296&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07540-x&rft_dat=%3Cgale_osti_%3EA712520364%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697525951&rft_id=info:pmid/&rft_galeid=A712520364&rfr_iscdi=true