parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices
This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition...
Gespeichert in:
Veröffentlicht in: | Parallel computing 2022-10, Vol.113 (C), p.102956, Article 102956 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 102956 |
container_title | Parallel computing |
container_volume | 113 |
creator | Xu, Tianshi Kalantzis, Vassilis Li, Ruipeng Xi, Yuanzhe Dillon, Geoffrey Saad, Yousef |
description | This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a p-way vertex separator, where p is an integer multiple of the total number of MPI processes. From a numerical perspective, parGeMSLR builds a Schur complement approximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a few model problems arising from discretizations of 3D Partial Differential Equations.
•Our library is publicly available at https://github.com/Hitenze/pargemslr.•The preconditioner featured in parGeMSLR is less sensitive to indefiniteness.•parGeMSLR supports both single and double precision real and complex arithmetic.•parGeMSLR can accelerate parts of the preconditioner via GPU-based matrix kernels. |
doi_str_mv | 10.1016/j.parco.2022.102956 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1881547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819122000497</els_id><sourcerecordid>S0167819122000497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5bade0f149048e09f4bb34f00ddc8e04e45b5b4dfb38dbe399dbcaf73a49042d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98Ai_B-9Zkk-3uCh5K0SpUBKvnkE1m27TZpCRbRfzyZq1nTzNveO_H8BC6omRMCZ3cbMY7GZQf5yTP0yWvi8kRGtGqzLOSsckxGiVXmVW0pqfoLMYNIWTCKzJC3yk4h-fl4vUWT3ES0lqwuNvb3lj4SOtSrfcBK9_tLHTgemz9Zxak2-JdAOWdNr3xzrgVlk7j6O1-0AmltnIFuPUBr8BBAuOY-BFwJ_tgFMQLdNJKG-Hyb56j94f7t9ljtniZP82mi0yxvOizopEaSEt5TXgFpG550zDeEqK1SpoDL5qi4bptWKUbYHWtGyXbkskhkWt2jq4PXB97I6IyPah1-tyB6gWtKlrwMpnYwaSCjzFAK3bBdDJ8CUrEULLYiN-SxVCyOJScUneHFKT_PwyEAQ9OgTZhoGtv_s3_ACNniZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Tianshi ; Kalantzis, Vassilis ; Li, Ruipeng ; Xi, Yuanzhe ; Dillon, Geoffrey ; Saad, Yousef</creator><creatorcontrib>Xu, Tianshi ; Kalantzis, Vassilis ; Li, Ruipeng ; Xi, Yuanzhe ; Dillon, Geoffrey ; Saad, Yousef</creatorcontrib><description>This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a p-way vertex separator, where p is an integer multiple of the total number of MPI processes. From a numerical perspective, parGeMSLR builds a Schur complement approximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a few model problems arising from discretizations of 3D Partial Differential Equations.
•Our library is publicly available at https://github.com/Hitenze/pargemslr.•The preconditioner featured in parGeMSLR is less sensitive to indefiniteness.•parGeMSLR supports both single and double precision real and complex arithmetic.•parGeMSLR can accelerate parts of the preconditioner via GPU-based matrix kernels.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/j.parco.2022.102956</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Distributed-memory preconditioner ; Graphics Processing Units ; Low-rank correction ; Schur complement ; Sparse non-Hermitian linear systems</subject><ispartof>Parallel computing, 2022-10, Vol.113 (C), p.102956, Article 102956</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-5bade0f149048e09f4bb34f00ddc8e04e45b5b4dfb38dbe399dbcaf73a49042d3</cites><orcidid>0000-0003-3119-1957 ; 0000000331191957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.parco.2022.102956$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1881547$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Tianshi</creatorcontrib><creatorcontrib>Kalantzis, Vassilis</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Xi, Yuanzhe</creatorcontrib><creatorcontrib>Dillon, Geoffrey</creatorcontrib><creatorcontrib>Saad, Yousef</creatorcontrib><title>parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices</title><title>Parallel computing</title><description>This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a p-way vertex separator, where p is an integer multiple of the total number of MPI processes. From a numerical perspective, parGeMSLR builds a Schur complement approximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a few model problems arising from discretizations of 3D Partial Differential Equations.
•Our library is publicly available at https://github.com/Hitenze/pargemslr.•The preconditioner featured in parGeMSLR is less sensitive to indefiniteness.•parGeMSLR supports both single and double precision real and complex arithmetic.•parGeMSLR can accelerate parts of the preconditioner via GPU-based matrix kernels.</description><subject>Distributed-memory preconditioner</subject><subject>Graphics Processing Units</subject><subject>Low-rank correction</subject><subject>Schur complement</subject><subject>Sparse non-Hermitian linear systems</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98Ai_B-9Zkk-3uCh5K0SpUBKvnkE1m27TZpCRbRfzyZq1nTzNveO_H8BC6omRMCZ3cbMY7GZQf5yTP0yWvi8kRGtGqzLOSsckxGiVXmVW0pqfoLMYNIWTCKzJC3yk4h-fl4vUWT3ES0lqwuNvb3lj4SOtSrfcBK9_tLHTgemz9Zxak2-JdAOWdNr3xzrgVlk7j6O1-0AmltnIFuPUBr8BBAuOY-BFwJ_tgFMQLdNJKG-Hyb56j94f7t9ljtniZP82mi0yxvOizopEaSEt5TXgFpG550zDeEqK1SpoDL5qi4bptWKUbYHWtGyXbkskhkWt2jq4PXB97I6IyPah1-tyB6gWtKlrwMpnYwaSCjzFAK3bBdDJ8CUrEULLYiN-SxVCyOJScUneHFKT_PwyEAQ9OgTZhoGtv_s3_ACNniZ0</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Xu, Tianshi</creator><creator>Kalantzis, Vassilis</creator><creator>Li, Ruipeng</creator><creator>Xi, Yuanzhe</creator><creator>Dillon, Geoffrey</creator><creator>Saad, Yousef</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3119-1957</orcidid><orcidid>https://orcid.org/0000000331191957</orcidid></search><sort><creationdate>202210</creationdate><title>parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices</title><author>Xu, Tianshi ; Kalantzis, Vassilis ; Li, Ruipeng ; Xi, Yuanzhe ; Dillon, Geoffrey ; Saad, Yousef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5bade0f149048e09f4bb34f00ddc8e04e45b5b4dfb38dbe399dbcaf73a49042d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Distributed-memory preconditioner</topic><topic>Graphics Processing Units</topic><topic>Low-rank correction</topic><topic>Schur complement</topic><topic>Sparse non-Hermitian linear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tianshi</creatorcontrib><creatorcontrib>Kalantzis, Vassilis</creatorcontrib><creatorcontrib>Li, Ruipeng</creatorcontrib><creatorcontrib>Xi, Yuanzhe</creatorcontrib><creatorcontrib>Dillon, Geoffrey</creatorcontrib><creatorcontrib>Saad, Yousef</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tianshi</au><au>Kalantzis, Vassilis</au><au>Li, Ruipeng</au><au>Xi, Yuanzhe</au><au>Dillon, Geoffrey</au><au>Saad, Yousef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices</atitle><jtitle>Parallel computing</jtitle><date>2022-10</date><risdate>2022</risdate><volume>113</volume><issue>C</issue><spage>102956</spage><pages>102956-</pages><artnum>102956</artnum><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>This paper discusses parGeMSLR, a C++/MPI software library for the solution of sparse systems of linear algebraic equations via preconditioned Krylov subspace methods in distributed-memory computing environments. The preconditioner implemented in parGeMSLR is based on algebraic domain decomposition and partitions the symmetrized adjacency graph recursively into several non-overlapping partitions via a p-way vertex separator, where p is an integer multiple of the total number of MPI processes. From a numerical perspective, parGeMSLR builds a Schur complement approximate inverse preconditioner as the sum between the matrix inverse of the interface coupling matrix and a low-rank correction term. To reduce the cost associated with the computation of the approximate inverse matrices, parGeMSLR exploits a multilevel partitioning of the algebraic domain. The parGeMSLR library is implemented on top of the Message Passing Interface and can solve both real and complex linear systems. Furthermore, parGeMSLR can take advantage of hybrid computing environments with in-node access to one or more Graphics Processing Units. Finally, the parallel efficiency (weak and strong scaling) of parGeMSLR is demonstrated on a few model problems arising from discretizations of 3D Partial Differential Equations.
•Our library is publicly available at https://github.com/Hitenze/pargemslr.•The preconditioner featured in parGeMSLR is less sensitive to indefiniteness.•parGeMSLR supports both single and double precision real and complex arithmetic.•parGeMSLR can accelerate parts of the preconditioner via GPU-based matrix kernels.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.parco.2022.102956</doi><orcidid>https://orcid.org/0000-0003-3119-1957</orcidid><orcidid>https://orcid.org/0000000331191957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8191 |
ispartof | Parallel computing, 2022-10, Vol.113 (C), p.102956, Article 102956 |
issn | 0167-8191 1872-7336 |
language | eng |
recordid | cdi_osti_scitechconnect_1881547 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Distributed-memory preconditioner Graphics Processing Units Low-rank correction Schur complement Sparse non-Hermitian linear systems |
title | parGeMSLR: A parallel multilevel Schur complement low-rank preconditioning and solution package for general sparse matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=parGeMSLR:%20A%20parallel%20multilevel%20Schur%20complement%20low-rank%20preconditioning%20and%20solution%20package%20for%20general%20sparse%20matrices&rft.jtitle=Parallel%20computing&rft.au=Xu,%20Tianshi&rft.date=2022-10&rft.volume=113&rft.issue=C&rft.spage=102956&rft.pages=102956-&rft.artnum=102956&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/j.parco.2022.102956&rft_dat=%3Celsevier_osti_%3ES0167819122000497%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167819122000497&rfr_iscdi=true |