Metal-organic frameworks as O 2 -selective adsorbents for air separations

Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2022-09, Vol.13 (35), p.10216-10237
Hauptverfasser: Jaramillo, David E, Jaffe, Adam, Snyder, Benjamin E R, Smith, Alex, Taw, Eric, Rohde, Rachel C, Dods, Matthew N, DeSnoo, William, Meihaus, Katie R, Harris, T David, Neaton, Jeffrey B, Long, Jeffrey R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10237
container_issue 35
container_start_page 10216
container_title Chemical science (Cambridge)
container_volume 13
creator Jaramillo, David E
Jaffe, Adam
Snyder, Benjamin E R
Smith, Alex
Taw, Eric
Rohde, Rachel C
Dods, Matthew N
DeSnoo, William
Meihaus, Katie R
Harris, T David
Neaton, Jeffrey B
Long, Jeffrey R
description Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N -selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O -selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O production and utilization and advance new uses for O . Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O -selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O , we survey the field of O -selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O adsorption enthalpy, Δ , is emphasized, and the free energy of O adsorption, Δ , is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal Δ values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.
doi_str_mv 10.1039/d2sc03577d
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1880893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36277628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-c164d603d827a8d2ad6838461ef2304b9080882b956a386555eba859d21289993</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottRe_AESPAqryWSTTY7S-gWVHtTzkk2yutpuSiYq_ntXq53LzOGZl5eHkGPOzjkT5sIDOiZkVfk9MgZW8kJJYfZ3N7ARmSK-smGE4BKqQzISCqpKgR6Tu_uQ7aqI6dn2naNtsuvwGdMbUot0SYEWGFbB5e4jUOsxpib0GWkbE7Vdohg2NtncxR6PyEFrVximf3tCnq6vHme3xWJ5cze7XBQOOM-F46r0igmvobLag_VKC10qHloQrGwM00xraIxUVmglpQyN1dJ44KCNMWJCTre5EXNXo-tycC8u9v3QsuZ6-DZigM62kEsRMYW23qRubdNXzVn9462ew8Ps19t8gE-28Oa9WQe_Q_8tiW-o12XH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metal-organic frameworks as O 2 -selective adsorbents for air separations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Jaramillo, David E ; Jaffe, Adam ; Snyder, Benjamin E R ; Smith, Alex ; Taw, Eric ; Rohde, Rachel C ; Dods, Matthew N ; DeSnoo, William ; Meihaus, Katie R ; Harris, T David ; Neaton, Jeffrey B ; Long, Jeffrey R</creator><creatorcontrib>Jaramillo, David E ; Jaffe, Adam ; Snyder, Benjamin E R ; Smith, Alex ; Taw, Eric ; Rohde, Rachel C ; Dods, Matthew N ; DeSnoo, William ; Meihaus, Katie R ; Harris, T David ; Neaton, Jeffrey B ; Long, Jeffrey R</creatorcontrib><description>Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N -selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O -selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O production and utilization and advance new uses for O . Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O -selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O , we survey the field of O -selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O adsorption enthalpy, Δ , is emphasized, and the free energy of O adsorption, Δ , is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal Δ values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc03577d</identifier><identifier>PMID: 36277628</identifier><language>eng</language><publisher>England: Royal Society of Chemistry (RSC)</publisher><ispartof>Chemical science (Cambridge), 2022-09, Vol.13 (35), p.10216-10237</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-c164d603d827a8d2ad6838461ef2304b9080882b956a386555eba859d21289993</citedby><cites>FETCH-LOGICAL-c211t-c164d603d827a8d2ad6838461ef2304b9080882b956a386555eba859d21289993</cites><orcidid>0000-0002-3068-4963 ; 0000-0002-9886-0249 ; 0000-0002-5324-1321 ; 0000-0003-4144-900X ; 0000-0002-7221-2374 ; 0000-0003-1621-2203 ; 0000000272212374 ; 0000000253241321 ; 0000000298860249 ; 000000034144900X ; 0000000230684963 ; 0000000316212203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36277628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1880893$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaramillo, David E</creatorcontrib><creatorcontrib>Jaffe, Adam</creatorcontrib><creatorcontrib>Snyder, Benjamin E R</creatorcontrib><creatorcontrib>Smith, Alex</creatorcontrib><creatorcontrib>Taw, Eric</creatorcontrib><creatorcontrib>Rohde, Rachel C</creatorcontrib><creatorcontrib>Dods, Matthew N</creatorcontrib><creatorcontrib>DeSnoo, William</creatorcontrib><creatorcontrib>Meihaus, Katie R</creatorcontrib><creatorcontrib>Harris, T David</creatorcontrib><creatorcontrib>Neaton, Jeffrey B</creatorcontrib><creatorcontrib>Long, Jeffrey R</creatorcontrib><title>Metal-organic frameworks as O 2 -selective adsorbents for air separations</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N -selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O -selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O production and utilization and advance new uses for O . Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O -selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O , we survey the field of O -selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O adsorption enthalpy, Δ , is emphasized, and the free energy of O adsorption, Δ , is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal Δ values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMottRe_AESPAqryWSTTY7S-gWVHtTzkk2yutpuSiYq_ntXq53LzOGZl5eHkGPOzjkT5sIDOiZkVfk9MgZW8kJJYfZ3N7ARmSK-smGE4BKqQzISCqpKgR6Tu_uQ7aqI6dn2naNtsuvwGdMbUot0SYEWGFbB5e4jUOsxpib0GWkbE7Vdohg2NtncxR6PyEFrVximf3tCnq6vHme3xWJ5cze7XBQOOM-F46r0igmvobLag_VKC10qHloQrGwM00xraIxUVmglpQyN1dJ44KCNMWJCTre5EXNXo-tycC8u9v3QsuZ6-DZigM62kEsRMYW23qRubdNXzVn9462ew8Ps19t8gE-28Oa9WQe_Q_8tiW-o12XH</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Jaramillo, David E</creator><creator>Jaffe, Adam</creator><creator>Snyder, Benjamin E R</creator><creator>Smith, Alex</creator><creator>Taw, Eric</creator><creator>Rohde, Rachel C</creator><creator>Dods, Matthew N</creator><creator>DeSnoo, William</creator><creator>Meihaus, Katie R</creator><creator>Harris, T David</creator><creator>Neaton, Jeffrey B</creator><creator>Long, Jeffrey R</creator><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3068-4963</orcidid><orcidid>https://orcid.org/0000-0002-9886-0249</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000-0003-4144-900X</orcidid><orcidid>https://orcid.org/0000-0002-7221-2374</orcidid><orcidid>https://orcid.org/0000-0003-1621-2203</orcidid><orcidid>https://orcid.org/0000000272212374</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000298860249</orcidid><orcidid>https://orcid.org/000000034144900X</orcidid><orcidid>https://orcid.org/0000000230684963</orcidid><orcidid>https://orcid.org/0000000316212203</orcidid></search><sort><creationdate>20220914</creationdate><title>Metal-organic frameworks as O 2 -selective adsorbents for air separations</title><author>Jaramillo, David E ; Jaffe, Adam ; Snyder, Benjamin E R ; Smith, Alex ; Taw, Eric ; Rohde, Rachel C ; Dods, Matthew N ; DeSnoo, William ; Meihaus, Katie R ; Harris, T David ; Neaton, Jeffrey B ; Long, Jeffrey R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-c164d603d827a8d2ad6838461ef2304b9080882b956a386555eba859d21289993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaramillo, David E</creatorcontrib><creatorcontrib>Jaffe, Adam</creatorcontrib><creatorcontrib>Snyder, Benjamin E R</creatorcontrib><creatorcontrib>Smith, Alex</creatorcontrib><creatorcontrib>Taw, Eric</creatorcontrib><creatorcontrib>Rohde, Rachel C</creatorcontrib><creatorcontrib>Dods, Matthew N</creatorcontrib><creatorcontrib>DeSnoo, William</creatorcontrib><creatorcontrib>Meihaus, Katie R</creatorcontrib><creatorcontrib>Harris, T David</creatorcontrib><creatorcontrib>Neaton, Jeffrey B</creatorcontrib><creatorcontrib>Long, Jeffrey R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaramillo, David E</au><au>Jaffe, Adam</au><au>Snyder, Benjamin E R</au><au>Smith, Alex</au><au>Taw, Eric</au><au>Rohde, Rachel C</au><au>Dods, Matthew N</au><au>DeSnoo, William</au><au>Meihaus, Katie R</au><au>Harris, T David</au><au>Neaton, Jeffrey B</au><au>Long, Jeffrey R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-organic frameworks as O 2 -selective adsorbents for air separations</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-09-14</date><risdate>2022</risdate><volume>13</volume><issue>35</issue><spage>10216</spage><epage>10237</epage><pages>10216-10237</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N -selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O -selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O production and utilization and advance new uses for O . Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O -selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O , we survey the field of O -selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O adsorption enthalpy, Δ , is emphasized, and the free energy of O adsorption, Δ , is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal Δ values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.</abstract><cop>England</cop><pub>Royal Society of Chemistry (RSC)</pub><pmid>36277628</pmid><doi>10.1039/d2sc03577d</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3068-4963</orcidid><orcidid>https://orcid.org/0000-0002-9886-0249</orcidid><orcidid>https://orcid.org/0000-0002-5324-1321</orcidid><orcidid>https://orcid.org/0000-0003-4144-900X</orcidid><orcidid>https://orcid.org/0000-0002-7221-2374</orcidid><orcidid>https://orcid.org/0000-0003-1621-2203</orcidid><orcidid>https://orcid.org/0000000272212374</orcidid><orcidid>https://orcid.org/0000000253241321</orcidid><orcidid>https://orcid.org/0000000298860249</orcidid><orcidid>https://orcid.org/000000034144900X</orcidid><orcidid>https://orcid.org/0000000230684963</orcidid><orcidid>https://orcid.org/0000000316212203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2022-09, Vol.13 (35), p.10216-10237
issn 2041-6520
2041-6539
language eng
recordid cdi_osti_scitechconnect_1880893
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
title Metal-organic frameworks as O 2 -selective adsorbents for air separations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-organic%20frameworks%20as%20O%202%20-selective%20adsorbents%20for%20air%20separations&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Jaramillo,%20David%20E&rft.date=2022-09-14&rft.volume=13&rft.issue=35&rft.spage=10216&rft.epage=10237&rft.pages=10216-10237&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc03577d&rft_dat=%3Cpubmed_osti_%3E36277628%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36277628&rfr_iscdi=true