Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars

The clay‐rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2022-12, Vol.127 (12), p.n/a
Hauptverfasser: Gasda, Patrick J., Comellas, Jade, Essunfeld, Ari, Das, Debarati, Bryk, Alexander B., Dehouck, Erwin, Schwenzer, Susanne P., Crossey, Laura, Herkenhoff, Kenneth, Johnson, Jeffrey R., Newsom, Horton, Lanza, Nina L., Rapin, William, Goetz, Walter, Meslin, Pierre‐Yves, Bridges, John C., Anderson, Ryan, David, Gael, Turner, Stuart M. R., Thorpe, Michael T., Kah, Linda, Frydenvang, Jens, Kronyak, Rachel, Caravaca, Gwénaël, Ollila, Ann, Le Mouélic, Stéphane, Nellessen, Matthew, Hoffman, Megan, Fey, Deirdra, Cousin, Anges, Wiens, Roger C., Clegg, Samuel M., Maurice, Sylvestre, Gasnault, Olivier, Delapp, Dorothea, Reyes‐Newell, Adriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Journal of geophysical research. Planets
container_volume 127
creator Gasda, Patrick J.
Comellas, Jade
Essunfeld, Ari
Das, Debarati
Bryk, Alexander B.
Dehouck, Erwin
Schwenzer, Susanne P.
Crossey, Laura
Herkenhoff, Kenneth
Johnson, Jeffrey R.
Newsom, Horton
Lanza, Nina L.
Rapin, William
Goetz, Walter
Meslin, Pierre‐Yves
Bridges, John C.
Anderson, Ryan
David, Gael
Turner, Stuart M. R.
Thorpe, Michael T.
Kah, Linda
Frydenvang, Jens
Kronyak, Rachel
Caravaca, Gwénaël
Ollila, Ann
Le Mouélic, Stéphane
Nellessen, Matthew
Hoffman, Megan
Fey, Deirdra
Cousin, Anges
Wiens, Roger C.
Clegg, Samuel M.
Maurice, Sylvestre
Gasnault, Olivier
Delapp, Dorothea
Reyes‐Newell, Adriana
description The clay‐rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark‐toned iron‐ and manganese‐rich veins, magnesium‐ and fluorine‐rich linear features, Ca‐sulfate cemented bedrock, manganese‐rich nodules, and iron‐rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark‐toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese‐rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox‐active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater's evolution and early Mars. Plain Language Summary The NASA Curiosity rover explored the ancient lakebed rocks within the Glen Torridon region of Mars from January 2019 to January 2021. The rover observed many signs that the bedrock was changed by groundwater, especially in the higher elevations along the rover's path. We used data from the rover's ChemCam instrument to record chemistry, and images from four cameras on the rover to look for physical changes to the rocks. When the rock in Glen Torridon was altered by groundwater, it introduced a variety of physical and chemical changes to the rock, and the amount of some elements (sodium, calcium, iron, magnesium, or manganese) increased in the rocks in association with these physical changes to the rocks. W
doi_str_mv 10.1029/2021JE007097
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1880499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760791762</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4722-8921f3b3a8597487d8c8eda9a74397bb2270a5901e7b87a6eb146ed3a67836863</originalsourceid><addsrcrecordid>eNp90c1O3DAQB_CoKlIRcOMBrPaExFJ_hNg-ou2ygBYhIThbk2SWGAV7sb2LwqmP0GfkSUhIQZzwxdbfvxlpNFm2z-gRo1z_5pSzixmlkmr5LdvmrNATzSj9_v7u8x_ZXoz3tD-qj5jYzp6vNhg2Fp-IX5LUILn0YdX41t91BFxNpg0-2JhCN_z_sXCHDpOtyClCWgeMxLq3smkL3cvff9e2asi8RUdufAi29o7cOpuG4jm0PQuQMBySSwhxN9taQhtx7_-9k92ezm6mZ5PF1fx8erKYQC45nyjN2VKUAtSxlrmStaoU1qBB5kLLsuRcUjjWlKEslYQCS5YXWAsopBKFKsRO9nPs62OyJlY2YdVU3jmskmFK0VzrHh2MqIHWrIJ9gNAZD9acnSzMkFGhcqq52vDe_hrtKvjHNcZk7v06uH4Gw2VBpWayGNThqKrgYwy4_GjLqBk2Zj5vrOdi5E-2xe5Lay7m1zPOlOTiFU0qlQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760791762</pqid></control><display><type>article</type><title>Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Gasda, Patrick J. ; Comellas, Jade ; Essunfeld, Ari ; Das, Debarati ; Bryk, Alexander B. ; Dehouck, Erwin ; Schwenzer, Susanne P. ; Crossey, Laura ; Herkenhoff, Kenneth ; Johnson, Jeffrey R. ; Newsom, Horton ; Lanza, Nina L. ; Rapin, William ; Goetz, Walter ; Meslin, Pierre‐Yves ; Bridges, John C. ; Anderson, Ryan ; David, Gael ; Turner, Stuart M. R. ; Thorpe, Michael T. ; Kah, Linda ; Frydenvang, Jens ; Kronyak, Rachel ; Caravaca, Gwénaël ; Ollila, Ann ; Le Mouélic, Stéphane ; Nellessen, Matthew ; Hoffman, Megan ; Fey, Deirdra ; Cousin, Anges ; Wiens, Roger C. ; Clegg, Samuel M. ; Maurice, Sylvestre ; Gasnault, Olivier ; Delapp, Dorothea ; Reyes‐Newell, Adriana</creator><creatorcontrib>Gasda, Patrick J. ; Comellas, Jade ; Essunfeld, Ari ; Das, Debarati ; Bryk, Alexander B. ; Dehouck, Erwin ; Schwenzer, Susanne P. ; Crossey, Laura ; Herkenhoff, Kenneth ; Johnson, Jeffrey R. ; Newsom, Horton ; Lanza, Nina L. ; Rapin, William ; Goetz, Walter ; Meslin, Pierre‐Yves ; Bridges, John C. ; Anderson, Ryan ; David, Gael ; Turner, Stuart M. R. ; Thorpe, Michael T. ; Kah, Linda ; Frydenvang, Jens ; Kronyak, Rachel ; Caravaca, Gwénaël ; Ollila, Ann ; Le Mouélic, Stéphane ; Nellessen, Matthew ; Hoffman, Megan ; Fey, Deirdra ; Cousin, Anges ; Wiens, Roger C. ; Clegg, Samuel M. ; Maurice, Sylvestre ; Gasnault, Olivier ; Delapp, Dorothea ; Reyes‐Newell, Adriana ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The clay‐rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark‐toned iron‐ and manganese‐rich veins, magnesium‐ and fluorine‐rich linear features, Ca‐sulfate cemented bedrock, manganese‐rich nodules, and iron‐rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark‐toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese‐rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox‐active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater's evolution and early Mars. Plain Language Summary The NASA Curiosity rover explored the ancient lakebed rocks within the Glen Torridon region of Mars from January 2019 to January 2021. The rover observed many signs that the bedrock was changed by groundwater, especially in the higher elevations along the rover's path. We used data from the rover's ChemCam instrument to record chemistry, and images from four cameras on the rover to look for physical changes to the rocks. When the rock in Glen Torridon was altered by groundwater, it introduced a variety of physical and chemical changes to the rock, and the amount of some elements (sodium, calcium, iron, magnesium, or manganese) increased in the rocks in association with these physical changes to the rocks. We can use these changes in the rock's characteristics to determine the type of water that changed these rocks on Mars (its chemical composition, its temperature, acidic vs. basic, oxidizing vs. reducing) at the time that the changes occurred. We found that many types of groundwater mixed at different times to cause changes to the rocks. At least one of the groundwater types was warmer than what was previously expected and could be related to the impact that formed the crater. Key Points Glen Torridon in Gale crater underwent multiple generations of diagenesis of the bedrock that widely varies in chemistry and morphology One hypothesis suggests an initial enrichment of elements occurred during the Gale's post‐impact hydrothermal alteration phase of evolution We estimate that at least one type of vein in Glen Torridon required warm temperatures, and highly reducing and alkaline fluid to form</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1029/2021JE007097</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acidic oxides ; Bedrock ; Cements ; ChemCam ; Chemical composition ; Chemical reactions ; Chemistry ; Clay ; Clay minerals ; Curiosity (Mars rover) ; Diagenesis ; Earth Sciences ; Fluorine ; Gale Crater ; GEOSCIENCES ; Glen Torridon ; Groundwater ; Habitability ; Iron ; Magnesium ; Manganese ; Mars ; Mars craters ; Mars rovers ; Mars Science Laboratory ; Mineralogy ; Morphology ; Nodules ; Oxidation ; Planetary Sciences ; Planetology ; Redox reactions ; Rocks ; Sciences of the Universe ; Sodium ; Stratigraphy ; Sulfates ; Veins (geology)</subject><ispartof>Journal of geophysical research. Planets, 2022-12, Vol.127 (12), p.n/a</ispartof><rights>2022 The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4722-8921f3b3a8597487d8c8eda9a74397bb2270a5901e7b87a6eb146ed3a67836863</citedby><cites>FETCH-LOGICAL-a4722-8921f3b3a8597487d8c8eda9a74397bb2270a5901e7b87a6eb146ed3a67836863</cites><orcidid>0000-0003-4445-7996 ; 0000-0002-0039-894X ; 0000-0001-9980-3804 ; 0000-0001-5260-1367 ; 0000-0002-6979-9012 ; 0000-0002-9608-0759 ; 0000-0002-4138-0471 ; 0000-0002-3409-7344 ; 0000-0002-9579-5779 ; 0000-0002-4358-8161 ; 0000-0002-1235-9016 ; 0000-0001-7998-8995 ; 0000-0002-2514-337X ; 0000-0003-4660-8006 ; 0000-0001-8689-0734 ; 0000-0001-9453-799X ; 0000-0001-6237-8023 ; 0000-0001-9294-1227 ; 0000-0001-9417-7701 ; 0000-0002-0703-3951 ; 0000-0002-1368-4494 ; 0000-0002-5586-4901 ; 0000-0002-3153-6663 ; 0000-0001-7823-7794 ; 0000-0003-4465-2871 ; 0000-0002-2719-1586 ; 0000-0001-7172-2033 ; 0000-0003-0756-7969 ; 0000-0002-2013-7456 ; 0000-0003-0895-1153 ; 0000-0002-0338-0948 ; 000000020039894X ; 0000000344457996 ; 0000000281048115 ; 0000000243588161 ; 0000000179988995 ; 0000000220137456 ; 0000000231536663 ; 0000000241380471 ; 0000000178237794 ; 0000000255864901 ; 0000000162378023 ; 0000000203380948 ; 0000000213684494 ; 0000000269799012 ; 0000000212359016 ; 0000000308951153 ; 000000019453799X ; 000000022514337X ; 0000000344652871 ; 0000000304799465 ; 0000000171722033 ; 0000000152601367 ; 0000000296080759 ; 0000000207033951 ; 0000000199803804 ; 0000000307567969 ; 0000000295795779 ; 0000000234097344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JE007097$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JE007097$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03840928$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1880499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gasda, Patrick J.</creatorcontrib><creatorcontrib>Comellas, Jade</creatorcontrib><creatorcontrib>Essunfeld, Ari</creatorcontrib><creatorcontrib>Das, Debarati</creatorcontrib><creatorcontrib>Bryk, Alexander B.</creatorcontrib><creatorcontrib>Dehouck, Erwin</creatorcontrib><creatorcontrib>Schwenzer, Susanne P.</creatorcontrib><creatorcontrib>Crossey, Laura</creatorcontrib><creatorcontrib>Herkenhoff, Kenneth</creatorcontrib><creatorcontrib>Johnson, Jeffrey R.</creatorcontrib><creatorcontrib>Newsom, Horton</creatorcontrib><creatorcontrib>Lanza, Nina L.</creatorcontrib><creatorcontrib>Rapin, William</creatorcontrib><creatorcontrib>Goetz, Walter</creatorcontrib><creatorcontrib>Meslin, Pierre‐Yves</creatorcontrib><creatorcontrib>Bridges, John C.</creatorcontrib><creatorcontrib>Anderson, Ryan</creatorcontrib><creatorcontrib>David, Gael</creatorcontrib><creatorcontrib>Turner, Stuart M. R.</creatorcontrib><creatorcontrib>Thorpe, Michael T.</creatorcontrib><creatorcontrib>Kah, Linda</creatorcontrib><creatorcontrib>Frydenvang, Jens</creatorcontrib><creatorcontrib>Kronyak, Rachel</creatorcontrib><creatorcontrib>Caravaca, Gwénaël</creatorcontrib><creatorcontrib>Ollila, Ann</creatorcontrib><creatorcontrib>Le Mouélic, Stéphane</creatorcontrib><creatorcontrib>Nellessen, Matthew</creatorcontrib><creatorcontrib>Hoffman, Megan</creatorcontrib><creatorcontrib>Fey, Deirdra</creatorcontrib><creatorcontrib>Cousin, Anges</creatorcontrib><creatorcontrib>Wiens, Roger C.</creatorcontrib><creatorcontrib>Clegg, Samuel M.</creatorcontrib><creatorcontrib>Maurice, Sylvestre</creatorcontrib><creatorcontrib>Gasnault, Olivier</creatorcontrib><creatorcontrib>Delapp, Dorothea</creatorcontrib><creatorcontrib>Reyes‐Newell, Adriana</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars</title><title>Journal of geophysical research. Planets</title><description>The clay‐rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark‐toned iron‐ and manganese‐rich veins, magnesium‐ and fluorine‐rich linear features, Ca‐sulfate cemented bedrock, manganese‐rich nodules, and iron‐rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark‐toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese‐rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox‐active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater's evolution and early Mars. Plain Language Summary The NASA Curiosity rover explored the ancient lakebed rocks within the Glen Torridon region of Mars from January 2019 to January 2021. The rover observed many signs that the bedrock was changed by groundwater, especially in the higher elevations along the rover's path. We used data from the rover's ChemCam instrument to record chemistry, and images from four cameras on the rover to look for physical changes to the rocks. When the rock in Glen Torridon was altered by groundwater, it introduced a variety of physical and chemical changes to the rock, and the amount of some elements (sodium, calcium, iron, magnesium, or manganese) increased in the rocks in association with these physical changes to the rocks. We can use these changes in the rock's characteristics to determine the type of water that changed these rocks on Mars (its chemical composition, its temperature, acidic vs. basic, oxidizing vs. reducing) at the time that the changes occurred. We found that many types of groundwater mixed at different times to cause changes to the rocks. At least one of the groundwater types was warmer than what was previously expected and could be related to the impact that formed the crater. Key Points Glen Torridon in Gale crater underwent multiple generations of diagenesis of the bedrock that widely varies in chemistry and morphology One hypothesis suggests an initial enrichment of elements occurred during the Gale's post‐impact hydrothermal alteration phase of evolution We estimate that at least one type of vein in Glen Torridon required warm temperatures, and highly reducing and alkaline fluid to form</description><subject>Acidic oxides</subject><subject>Bedrock</subject><subject>Cements</subject><subject>ChemCam</subject><subject>Chemical composition</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Curiosity (Mars rover)</subject><subject>Diagenesis</subject><subject>Earth Sciences</subject><subject>Fluorine</subject><subject>Gale Crater</subject><subject>GEOSCIENCES</subject><subject>Glen Torridon</subject><subject>Groundwater</subject><subject>Habitability</subject><subject>Iron</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Mars</subject><subject>Mars craters</subject><subject>Mars rovers</subject><subject>Mars Science Laboratory</subject><subject>Mineralogy</subject><subject>Morphology</subject><subject>Nodules</subject><subject>Oxidation</subject><subject>Planetary Sciences</subject><subject>Planetology</subject><subject>Redox reactions</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Sodium</subject><subject>Stratigraphy</subject><subject>Sulfates</subject><subject>Veins (geology)</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90c1O3DAQB_CoKlIRcOMBrPaExFJ_hNg-ou2ygBYhIThbk2SWGAV7sb2LwqmP0GfkSUhIQZzwxdbfvxlpNFm2z-gRo1z_5pSzixmlkmr5LdvmrNATzSj9_v7u8x_ZXoz3tD-qj5jYzp6vNhg2Fp-IX5LUILn0YdX41t91BFxNpg0-2JhCN_z_sXCHDpOtyClCWgeMxLq3smkL3cvff9e2asi8RUdufAi29o7cOpuG4jm0PQuQMBySSwhxN9taQhtx7_-9k92ezm6mZ5PF1fx8erKYQC45nyjN2VKUAtSxlrmStaoU1qBB5kLLsuRcUjjWlKEslYQCS5YXWAsopBKFKsRO9nPs62OyJlY2YdVU3jmskmFK0VzrHh2MqIHWrIJ9gNAZD9acnSzMkFGhcqq52vDe_hrtKvjHNcZk7v06uH4Gw2VBpWayGNThqKrgYwy4_GjLqBk2Zj5vrOdi5E-2xe5Lay7m1zPOlOTiFU0qlQI</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Gasda, Patrick J.</creator><creator>Comellas, Jade</creator><creator>Essunfeld, Ari</creator><creator>Das, Debarati</creator><creator>Bryk, Alexander B.</creator><creator>Dehouck, Erwin</creator><creator>Schwenzer, Susanne P.</creator><creator>Crossey, Laura</creator><creator>Herkenhoff, Kenneth</creator><creator>Johnson, Jeffrey R.</creator><creator>Newsom, Horton</creator><creator>Lanza, Nina L.</creator><creator>Rapin, William</creator><creator>Goetz, Walter</creator><creator>Meslin, Pierre‐Yves</creator><creator>Bridges, John C.</creator><creator>Anderson, Ryan</creator><creator>David, Gael</creator><creator>Turner, Stuart M. R.</creator><creator>Thorpe, Michael T.</creator><creator>Kah, Linda</creator><creator>Frydenvang, Jens</creator><creator>Kronyak, Rachel</creator><creator>Caravaca, Gwénaël</creator><creator>Ollila, Ann</creator><creator>Le Mouélic, Stéphane</creator><creator>Nellessen, Matthew</creator><creator>Hoffman, Megan</creator><creator>Fey, Deirdra</creator><creator>Cousin, Anges</creator><creator>Wiens, Roger C.</creator><creator>Clegg, Samuel M.</creator><creator>Maurice, Sylvestre</creator><creator>Gasnault, Olivier</creator><creator>Delapp, Dorothea</creator><creator>Reyes‐Newell, Adriana</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4445-7996</orcidid><orcidid>https://orcid.org/0000-0002-0039-894X</orcidid><orcidid>https://orcid.org/0000-0001-9980-3804</orcidid><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0002-6979-9012</orcidid><orcidid>https://orcid.org/0000-0002-9608-0759</orcidid><orcidid>https://orcid.org/0000-0002-4138-0471</orcidid><orcidid>https://orcid.org/0000-0002-3409-7344</orcidid><orcidid>https://orcid.org/0000-0002-9579-5779</orcidid><orcidid>https://orcid.org/0000-0002-4358-8161</orcidid><orcidid>https://orcid.org/0000-0002-1235-9016</orcidid><orcidid>https://orcid.org/0000-0001-7998-8995</orcidid><orcidid>https://orcid.org/0000-0002-2514-337X</orcidid><orcidid>https://orcid.org/0000-0003-4660-8006</orcidid><orcidid>https://orcid.org/0000-0001-8689-0734</orcidid><orcidid>https://orcid.org/0000-0001-9453-799X</orcidid><orcidid>https://orcid.org/0000-0001-6237-8023</orcidid><orcidid>https://orcid.org/0000-0001-9294-1227</orcidid><orcidid>https://orcid.org/0000-0001-9417-7701</orcidid><orcidid>https://orcid.org/0000-0002-0703-3951</orcidid><orcidid>https://orcid.org/0000-0002-1368-4494</orcidid><orcidid>https://orcid.org/0000-0002-5586-4901</orcidid><orcidid>https://orcid.org/0000-0002-3153-6663</orcidid><orcidid>https://orcid.org/0000-0001-7823-7794</orcidid><orcidid>https://orcid.org/0000-0003-4465-2871</orcidid><orcidid>https://orcid.org/0000-0002-2719-1586</orcidid><orcidid>https://orcid.org/0000-0001-7172-2033</orcidid><orcidid>https://orcid.org/0000-0003-0756-7969</orcidid><orcidid>https://orcid.org/0000-0002-2013-7456</orcidid><orcidid>https://orcid.org/0000-0003-0895-1153</orcidid><orcidid>https://orcid.org/0000-0002-0338-0948</orcidid><orcidid>https://orcid.org/000000020039894X</orcidid><orcidid>https://orcid.org/0000000344457996</orcidid><orcidid>https://orcid.org/0000000281048115</orcidid><orcidid>https://orcid.org/0000000243588161</orcidid><orcidid>https://orcid.org/0000000179988995</orcidid><orcidid>https://orcid.org/0000000220137456</orcidid><orcidid>https://orcid.org/0000000231536663</orcidid><orcidid>https://orcid.org/0000000241380471</orcidid><orcidid>https://orcid.org/0000000178237794</orcidid><orcidid>https://orcid.org/0000000255864901</orcidid><orcidid>https://orcid.org/0000000162378023</orcidid><orcidid>https://orcid.org/0000000203380948</orcidid><orcidid>https://orcid.org/0000000213684494</orcidid><orcidid>https://orcid.org/0000000269799012</orcidid><orcidid>https://orcid.org/0000000212359016</orcidid><orcidid>https://orcid.org/0000000308951153</orcidid><orcidid>https://orcid.org/000000019453799X</orcidid><orcidid>https://orcid.org/000000022514337X</orcidid><orcidid>https://orcid.org/0000000344652871</orcidid><orcidid>https://orcid.org/0000000304799465</orcidid><orcidid>https://orcid.org/0000000171722033</orcidid><orcidid>https://orcid.org/0000000152601367</orcidid><orcidid>https://orcid.org/0000000296080759</orcidid><orcidid>https://orcid.org/0000000207033951</orcidid><orcidid>https://orcid.org/0000000199803804</orcidid><orcidid>https://orcid.org/0000000307567969</orcidid><orcidid>https://orcid.org/0000000295795779</orcidid><orcidid>https://orcid.org/0000000234097344</orcidid></search><sort><creationdate>202212</creationdate><title>Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars</title><author>Gasda, Patrick J. ; Comellas, Jade ; Essunfeld, Ari ; Das, Debarati ; Bryk, Alexander B. ; Dehouck, Erwin ; Schwenzer, Susanne P. ; Crossey, Laura ; Herkenhoff, Kenneth ; Johnson, Jeffrey R. ; Newsom, Horton ; Lanza, Nina L. ; Rapin, William ; Goetz, Walter ; Meslin, Pierre‐Yves ; Bridges, John C. ; Anderson, Ryan ; David, Gael ; Turner, Stuart M. R. ; Thorpe, Michael T. ; Kah, Linda ; Frydenvang, Jens ; Kronyak, Rachel ; Caravaca, Gwénaël ; Ollila, Ann ; Le Mouélic, Stéphane ; Nellessen, Matthew ; Hoffman, Megan ; Fey, Deirdra ; Cousin, Anges ; Wiens, Roger C. ; Clegg, Samuel M. ; Maurice, Sylvestre ; Gasnault, Olivier ; Delapp, Dorothea ; Reyes‐Newell, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4722-8921f3b3a8597487d8c8eda9a74397bb2270a5901e7b87a6eb146ed3a67836863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acidic oxides</topic><topic>Bedrock</topic><topic>Cements</topic><topic>ChemCam</topic><topic>Chemical composition</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Curiosity (Mars rover)</topic><topic>Diagenesis</topic><topic>Earth Sciences</topic><topic>Fluorine</topic><topic>Gale Crater</topic><topic>GEOSCIENCES</topic><topic>Glen Torridon</topic><topic>Groundwater</topic><topic>Habitability</topic><topic>Iron</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Mars</topic><topic>Mars craters</topic><topic>Mars rovers</topic><topic>Mars Science Laboratory</topic><topic>Mineralogy</topic><topic>Morphology</topic><topic>Nodules</topic><topic>Oxidation</topic><topic>Planetary Sciences</topic><topic>Planetology</topic><topic>Redox reactions</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Sodium</topic><topic>Stratigraphy</topic><topic>Sulfates</topic><topic>Veins (geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasda, Patrick J.</creatorcontrib><creatorcontrib>Comellas, Jade</creatorcontrib><creatorcontrib>Essunfeld, Ari</creatorcontrib><creatorcontrib>Das, Debarati</creatorcontrib><creatorcontrib>Bryk, Alexander B.</creatorcontrib><creatorcontrib>Dehouck, Erwin</creatorcontrib><creatorcontrib>Schwenzer, Susanne P.</creatorcontrib><creatorcontrib>Crossey, Laura</creatorcontrib><creatorcontrib>Herkenhoff, Kenneth</creatorcontrib><creatorcontrib>Johnson, Jeffrey R.</creatorcontrib><creatorcontrib>Newsom, Horton</creatorcontrib><creatorcontrib>Lanza, Nina L.</creatorcontrib><creatorcontrib>Rapin, William</creatorcontrib><creatorcontrib>Goetz, Walter</creatorcontrib><creatorcontrib>Meslin, Pierre‐Yves</creatorcontrib><creatorcontrib>Bridges, John C.</creatorcontrib><creatorcontrib>Anderson, Ryan</creatorcontrib><creatorcontrib>David, Gael</creatorcontrib><creatorcontrib>Turner, Stuart M. R.</creatorcontrib><creatorcontrib>Thorpe, Michael T.</creatorcontrib><creatorcontrib>Kah, Linda</creatorcontrib><creatorcontrib>Frydenvang, Jens</creatorcontrib><creatorcontrib>Kronyak, Rachel</creatorcontrib><creatorcontrib>Caravaca, Gwénaël</creatorcontrib><creatorcontrib>Ollila, Ann</creatorcontrib><creatorcontrib>Le Mouélic, Stéphane</creatorcontrib><creatorcontrib>Nellessen, Matthew</creatorcontrib><creatorcontrib>Hoffman, Megan</creatorcontrib><creatorcontrib>Fey, Deirdra</creatorcontrib><creatorcontrib>Cousin, Anges</creatorcontrib><creatorcontrib>Wiens, Roger C.</creatorcontrib><creatorcontrib>Clegg, Samuel M.</creatorcontrib><creatorcontrib>Maurice, Sylvestre</creatorcontrib><creatorcontrib>Gasnault, Olivier</creatorcontrib><creatorcontrib>Delapp, Dorothea</creatorcontrib><creatorcontrib>Reyes‐Newell, Adriana</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasda, Patrick J.</au><au>Comellas, Jade</au><au>Essunfeld, Ari</au><au>Das, Debarati</au><au>Bryk, Alexander B.</au><au>Dehouck, Erwin</au><au>Schwenzer, Susanne P.</au><au>Crossey, Laura</au><au>Herkenhoff, Kenneth</au><au>Johnson, Jeffrey R.</au><au>Newsom, Horton</au><au>Lanza, Nina L.</au><au>Rapin, William</au><au>Goetz, Walter</au><au>Meslin, Pierre‐Yves</au><au>Bridges, John C.</au><au>Anderson, Ryan</au><au>David, Gael</au><au>Turner, Stuart M. R.</au><au>Thorpe, Michael T.</au><au>Kah, Linda</au><au>Frydenvang, Jens</au><au>Kronyak, Rachel</au><au>Caravaca, Gwénaël</au><au>Ollila, Ann</au><au>Le Mouélic, Stéphane</au><au>Nellessen, Matthew</au><au>Hoffman, Megan</au><au>Fey, Deirdra</au><au>Cousin, Anges</au><au>Wiens, Roger C.</au><au>Clegg, Samuel M.</au><au>Maurice, Sylvestre</au><au>Gasnault, Olivier</au><au>Delapp, Dorothea</au><au>Reyes‐Newell, Adriana</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars</atitle><jtitle>Journal of geophysical research. Planets</jtitle><date>2022-12</date><risdate>2022</risdate><volume>127</volume><issue>12</issue><epage>n/a</epage><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>The clay‐rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark‐toned iron‐ and manganese‐rich veins, magnesium‐ and fluorine‐rich linear features, Ca‐sulfate cemented bedrock, manganese‐rich nodules, and iron‐rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark‐toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese‐rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox‐active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater's evolution and early Mars. Plain Language Summary The NASA Curiosity rover explored the ancient lakebed rocks within the Glen Torridon region of Mars from January 2019 to January 2021. The rover observed many signs that the bedrock was changed by groundwater, especially in the higher elevations along the rover's path. We used data from the rover's ChemCam instrument to record chemistry, and images from four cameras on the rover to look for physical changes to the rocks. When the rock in Glen Torridon was altered by groundwater, it introduced a variety of physical and chemical changes to the rock, and the amount of some elements (sodium, calcium, iron, magnesium, or manganese) increased in the rocks in association with these physical changes to the rocks. We can use these changes in the rock's characteristics to determine the type of water that changed these rocks on Mars (its chemical composition, its temperature, acidic vs. basic, oxidizing vs. reducing) at the time that the changes occurred. We found that many types of groundwater mixed at different times to cause changes to the rocks. At least one of the groundwater types was warmer than what was previously expected and could be related to the impact that formed the crater. Key Points Glen Torridon in Gale crater underwent multiple generations of diagenesis of the bedrock that widely varies in chemistry and morphology One hypothesis suggests an initial enrichment of elements occurred during the Gale's post‐impact hydrothermal alteration phase of evolution We estimate that at least one type of vein in Glen Torridon required warm temperatures, and highly reducing and alkaline fluid to form</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JE007097</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-4445-7996</orcidid><orcidid>https://orcid.org/0000-0002-0039-894X</orcidid><orcidid>https://orcid.org/0000-0001-9980-3804</orcidid><orcidid>https://orcid.org/0000-0001-5260-1367</orcidid><orcidid>https://orcid.org/0000-0002-6979-9012</orcidid><orcidid>https://orcid.org/0000-0002-9608-0759</orcidid><orcidid>https://orcid.org/0000-0002-4138-0471</orcidid><orcidid>https://orcid.org/0000-0002-3409-7344</orcidid><orcidid>https://orcid.org/0000-0002-9579-5779</orcidid><orcidid>https://orcid.org/0000-0002-4358-8161</orcidid><orcidid>https://orcid.org/0000-0002-1235-9016</orcidid><orcidid>https://orcid.org/0000-0001-7998-8995</orcidid><orcidid>https://orcid.org/0000-0002-2514-337X</orcidid><orcidid>https://orcid.org/0000-0003-4660-8006</orcidid><orcidid>https://orcid.org/0000-0001-8689-0734</orcidid><orcidid>https://orcid.org/0000-0001-9453-799X</orcidid><orcidid>https://orcid.org/0000-0001-6237-8023</orcidid><orcidid>https://orcid.org/0000-0001-9294-1227</orcidid><orcidid>https://orcid.org/0000-0001-9417-7701</orcidid><orcidid>https://orcid.org/0000-0002-0703-3951</orcidid><orcidid>https://orcid.org/0000-0002-1368-4494</orcidid><orcidid>https://orcid.org/0000-0002-5586-4901</orcidid><orcidid>https://orcid.org/0000-0002-3153-6663</orcidid><orcidid>https://orcid.org/0000-0001-7823-7794</orcidid><orcidid>https://orcid.org/0000-0003-4465-2871</orcidid><orcidid>https://orcid.org/0000-0002-2719-1586</orcidid><orcidid>https://orcid.org/0000-0001-7172-2033</orcidid><orcidid>https://orcid.org/0000-0003-0756-7969</orcidid><orcidid>https://orcid.org/0000-0002-2013-7456</orcidid><orcidid>https://orcid.org/0000-0003-0895-1153</orcidid><orcidid>https://orcid.org/0000-0002-0338-0948</orcidid><orcidid>https://orcid.org/000000020039894X</orcidid><orcidid>https://orcid.org/0000000344457996</orcidid><orcidid>https://orcid.org/0000000281048115</orcidid><orcidid>https://orcid.org/0000000243588161</orcidid><orcidid>https://orcid.org/0000000179988995</orcidid><orcidid>https://orcid.org/0000000220137456</orcidid><orcidid>https://orcid.org/0000000231536663</orcidid><orcidid>https://orcid.org/0000000241380471</orcidid><orcidid>https://orcid.org/0000000178237794</orcidid><orcidid>https://orcid.org/0000000255864901</orcidid><orcidid>https://orcid.org/0000000162378023</orcidid><orcidid>https://orcid.org/0000000203380948</orcidid><orcidid>https://orcid.org/0000000213684494</orcidid><orcidid>https://orcid.org/0000000269799012</orcidid><orcidid>https://orcid.org/0000000212359016</orcidid><orcidid>https://orcid.org/0000000308951153</orcidid><orcidid>https://orcid.org/000000019453799X</orcidid><orcidid>https://orcid.org/000000022514337X</orcidid><orcidid>https://orcid.org/0000000344652871</orcidid><orcidid>https://orcid.org/0000000304799465</orcidid><orcidid>https://orcid.org/0000000171722033</orcidid><orcidid>https://orcid.org/0000000152601367</orcidid><orcidid>https://orcid.org/0000000296080759</orcidid><orcidid>https://orcid.org/0000000207033951</orcidid><orcidid>https://orcid.org/0000000199803804</orcidid><orcidid>https://orcid.org/0000000307567969</orcidid><orcidid>https://orcid.org/0000000295795779</orcidid><orcidid>https://orcid.org/0000000234097344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2022-12, Vol.127 (12), p.n/a
issn 2169-9097
2169-9100
language eng
recordid cdi_osti_scitechconnect_1880499
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Acidic oxides
Bedrock
Cements
ChemCam
Chemical composition
Chemical reactions
Chemistry
Clay
Clay minerals
Curiosity (Mars rover)
Diagenesis
Earth Sciences
Fluorine
Gale Crater
GEOSCIENCES
Glen Torridon
Groundwater
Habitability
Iron
Magnesium
Manganese
Mars
Mars craters
Mars rovers
Mars Science Laboratory
Mineralogy
Morphology
Nodules
Oxidation
Planetary Sciences
Planetology
Redox reactions
Rocks
Sciences of the Universe
Sodium
Stratigraphy
Sulfates
Veins (geology)
title Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20the%20Morphology%20and%20Chemistry%20of%20Diagenetic%20Features%20in%20the%20Clay%E2%80%90Rich%20Glen%20Torridon%20Unit%20of%20Gale%20Crater,%20Mars&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Gasda,%20Patrick%20J.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-12&rft.volume=127&rft.issue=12&rft.epage=n/a&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1029/2021JE007097&rft_dat=%3Cproquest_osti_%3E2760791762%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760791762&rft_id=info:pmid/&rfr_iscdi=true