How Water Attacks MXene

Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have shown outstanding performances in electrochemical energy storage and many other applications. However, the stability of MXene remains a concern, especially its quick degradation in aqueous solutions under ambient conditions. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-06, Vol.34 (11), p.4975-4982
Hauptverfasser: Wu, Tao, Kent, Paul R. C., Gogotsi, Yury, Jiang, De-en
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4982
container_issue 11
container_start_page 4975
container_title Chemistry of materials
container_volume 34
creator Wu, Tao
Kent, Paul R. C.
Gogotsi, Yury
Jiang, De-en
description Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have shown outstanding performances in electrochemical energy storage and many other applications. However, the stability of MXene remains a concern, especially its quick degradation in aqueous solutions under ambient conditions. Here, we report on the water/Ti3C2O2-MXene interfacial chemistry from first-principles molecular dynamics simulations at room temperature. Surprisingly, we find that the water molecules can attack the basal plane of Ti3C2O2 and pull the surface Ti atoms out, thereby reconstructing the surface. By tracking close encounters of water molecules and surface Ti atoms on the basal plane of Ti3C2O2, we show that the attack is initiated by the chemisorption of a water molecule on a surface Ti atom, followed by the breaking of Ti–C bonds and deprotonation of the water molecule, leading to the formation of Ti–OH on the Ti3C2O2 surface and a hydronium ion in the aqueous phase. Our finding highlights the susceptibility of Ti3C2O2 MXene to water attack, supporting recent experimental observations. Furthermore, we demonstrate that preventing close encounters of water molecules and the surface Ti atoms is key to the stability of the basal plane and can be realized by negatively charging the surface (thereby reorienting the O atoms of water away from the surface) or converting the surface O to −OH groups (thereby shifting the water layer further away from the surface). Our insights and approach highlight the importance of the reactivity of water when interfacing with 2D materials such as MXenes.
doi_str_mv 10.1021/acs.chemmater.2c00224
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1879956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c71647586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2844-e83c2e9a05c8a4fd82f204a8afe5cdf3e9f14d1e92f69e3a9267e1c3c99402573</originalsourceid><addsrcrecordid>eNqFkEFLxDAQRoMouK6ePQnFe2syTdrkuCzqCiteFL2FMJ2wXW0rSUT897Z08epp-JjvDcxj7ErwQnAQNw5jgTvqOpcoFICcA8gjthAKeK7GdMwWXJs6l7WqTtlZjHvOxYjqBbvcDN_Z6wRmq5Qcvsfs8Y16Omcn3n1EujjMJXu5u31eb_Lt0_3DerXNHWgpc9IlAhnHFWonfaPBA5dOO08KG1-S8UI2ggz4ylDpDFQ1CSzRGMlB1eWSXc93h5haG7FNhDsc-p4wWaFrY1Q1ltRcwjDEGMjbz9B2LvxYwe2kwI4K7J8Ce1AwcmLmpvV--Ar9-Mo_zC9UBWGx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How Water Attacks MXene</title><source>American Chemical Society Journals</source><creator>Wu, Tao ; Kent, Paul R. C. ; Gogotsi, Yury ; Jiang, De-en</creator><creatorcontrib>Wu, Tao ; Kent, Paul R. C. ; Gogotsi, Yury ; Jiang, De-en ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures, and Transport (FIRST) Center ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have shown outstanding performances in electrochemical energy storage and many other applications. However, the stability of MXene remains a concern, especially its quick degradation in aqueous solutions under ambient conditions. Here, we report on the water/Ti3C2O2-MXene interfacial chemistry from first-principles molecular dynamics simulations at room temperature. Surprisingly, we find that the water molecules can attack the basal plane of Ti3C2O2 and pull the surface Ti atoms out, thereby reconstructing the surface. By tracking close encounters of water molecules and surface Ti atoms on the basal plane of Ti3C2O2, we show that the attack is initiated by the chemisorption of a water molecule on a surface Ti atom, followed by the breaking of Ti–C bonds and deprotonation of the water molecule, leading to the formation of Ti–OH on the Ti3C2O2 surface and a hydronium ion in the aqueous phase. Our finding highlights the susceptibility of Ti3C2O2 MXene to water attack, supporting recent experimental observations. Furthermore, we demonstrate that preventing close encounters of water molecules and the surface Ti atoms is key to the stability of the basal plane and can be realized by negatively charging the surface (thereby reorienting the O atoms of water away from the surface) or converting the surface O to −OH groups (thereby shifting the water layer further away from the surface). Our insights and approach highlight the importance of the reactivity of water when interfacing with 2D materials such as MXenes.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c00224</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Layers ; MATERIALS SCIENCE ; Molecules ; Stability ; Two dimensional materials</subject><ispartof>Chemistry of materials, 2022-06, Vol.34 (11), p.4975-4982</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2844-e83c2e9a05c8a4fd82f204a8afe5cdf3e9f14d1e92f69e3a9267e1c3c99402573</citedby><cites>FETCH-LOGICAL-a2844-e83c2e9a05c8a4fd82f204a8afe5cdf3e9f14d1e92f69e3a9267e1c3c99402573</cites><orcidid>0000-0001-9423-4032 ; 0000-0001-5539-4017 ; 0000-0001-5167-0731 ; 0000000151670731 ; 0000000155394017 ; 0000000194234032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.2c00224$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c00224$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1879956$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Jiang, De-en</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures, and Transport (FIRST) Center</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>How Water Attacks MXene</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have shown outstanding performances in electrochemical energy storage and many other applications. However, the stability of MXene remains a concern, especially its quick degradation in aqueous solutions under ambient conditions. Here, we report on the water/Ti3C2O2-MXene interfacial chemistry from first-principles molecular dynamics simulations at room temperature. Surprisingly, we find that the water molecules can attack the basal plane of Ti3C2O2 and pull the surface Ti atoms out, thereby reconstructing the surface. By tracking close encounters of water molecules and surface Ti atoms on the basal plane of Ti3C2O2, we show that the attack is initiated by the chemisorption of a water molecule on a surface Ti atom, followed by the breaking of Ti–C bonds and deprotonation of the water molecule, leading to the formation of Ti–OH on the Ti3C2O2 surface and a hydronium ion in the aqueous phase. Our finding highlights the susceptibility of Ti3C2O2 MXene to water attack, supporting recent experimental observations. Furthermore, we demonstrate that preventing close encounters of water molecules and the surface Ti atoms is key to the stability of the basal plane and can be realized by negatively charging the surface (thereby reorienting the O atoms of water away from the surface) or converting the surface O to −OH groups (thereby shifting the water layer further away from the surface). Our insights and approach highlight the importance of the reactivity of water when interfacing with 2D materials such as MXenes.</description><subject>Adsorption</subject><subject>Layers</subject><subject>MATERIALS SCIENCE</subject><subject>Molecules</subject><subject>Stability</subject><subject>Two dimensional materials</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQRoMouK6ePQnFe2syTdrkuCzqCiteFL2FMJ2wXW0rSUT897Z08epp-JjvDcxj7ErwQnAQNw5jgTvqOpcoFICcA8gjthAKeK7GdMwWXJs6l7WqTtlZjHvOxYjqBbvcDN_Z6wRmq5Qcvsfs8Y16Omcn3n1EujjMJXu5u31eb_Lt0_3DerXNHWgpc9IlAhnHFWonfaPBA5dOO08KG1-S8UI2ggz4ylDpDFQ1CSzRGMlB1eWSXc93h5haG7FNhDsc-p4wWaFrY1Q1ltRcwjDEGMjbz9B2LvxYwe2kwI4K7J8Ce1AwcmLmpvV--Ar9-Mo_zC9UBWGx</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Wu, Tao</creator><creator>Kent, Paul R. C.</creator><creator>Gogotsi, Yury</creator><creator>Jiang, De-en</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid><orcidid>https://orcid.org/0000000151670731</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid></search><sort><creationdate>20220614</creationdate><title>How Water Attacks MXene</title><author>Wu, Tao ; Kent, Paul R. C. ; Gogotsi, Yury ; Jiang, De-en</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2844-e83c2e9a05c8a4fd82f204a8afe5cdf3e9f14d1e92f69e3a9267e1c3c99402573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Layers</topic><topic>MATERIALS SCIENCE</topic><topic>Molecules</topic><topic>Stability</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Jiang, De-en</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures, and Transport (FIRST) Center</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Kent, Paul R. C.</au><au>Gogotsi, Yury</au><au>Jiang, De-en</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures, and Transport (FIRST) Center</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Water Attacks MXene</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-06-14</date><risdate>2022</risdate><volume>34</volume><issue>11</issue><spage>4975</spage><epage>4982</epage><pages>4975-4982</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have shown outstanding performances in electrochemical energy storage and many other applications. However, the stability of MXene remains a concern, especially its quick degradation in aqueous solutions under ambient conditions. Here, we report on the water/Ti3C2O2-MXene interfacial chemistry from first-principles molecular dynamics simulations at room temperature. Surprisingly, we find that the water molecules can attack the basal plane of Ti3C2O2 and pull the surface Ti atoms out, thereby reconstructing the surface. By tracking close encounters of water molecules and surface Ti atoms on the basal plane of Ti3C2O2, we show that the attack is initiated by the chemisorption of a water molecule on a surface Ti atom, followed by the breaking of Ti–C bonds and deprotonation of the water molecule, leading to the formation of Ti–OH on the Ti3C2O2 surface and a hydronium ion in the aqueous phase. Our finding highlights the susceptibility of Ti3C2O2 MXene to water attack, supporting recent experimental observations. Furthermore, we demonstrate that preventing close encounters of water molecules and the surface Ti atoms is key to the stability of the basal plane and can be realized by negatively charging the surface (thereby reorienting the O atoms of water away from the surface) or converting the surface O to −OH groups (thereby shifting the water layer further away from the surface). Our insights and approach highlight the importance of the reactivity of water when interfacing with 2D materials such as MXenes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c00224</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000-0001-5167-0731</orcidid><orcidid>https://orcid.org/0000000151670731</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000194234032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2022-06, Vol.34 (11), p.4975-4982
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1879956
source American Chemical Society Journals
subjects Adsorption
Layers
MATERIALS SCIENCE
Molecules
Stability
Two dimensional materials
title How Water Attacks MXene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Water%20Attacks%20MXene&rft.jtitle=Chemistry%20of%20materials&rft.au=Wu,%20Tao&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-06-14&rft.volume=34&rft.issue=11&rft.spage=4975&rft.epage=4982&rft.pages=4975-4982&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c00224&rft_dat=%3Cacs_osti_%3Ec71647586%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true