Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide
Inversion, that is, Mg/Mn antisite disorder, in a spinel oxide simultaneously causes blockage of favorable Mg2+ migration paths, raising activation barriers for diffusion, and it reduces the number of redox-active metals, limiting the maximum capacity in the spinel. An inversion-free spinel, MgCr1.5...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2022-04, Vol.34 (8), p.3789-3797 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3797 |
---|---|
container_issue | 8 |
container_start_page | 3789 |
container_title | Chemistry of materials |
container_volume | 34 |
creator | Kwon, Bob Jin Yin, Liang Roy, Indrani Leon, Noel J Kumar, Khagesh Kim, Jae Jin Han, Jinhyup Gim, Jihyeon Liao, Chen Lapidus, Saul H Cabana, Jordi Key, Baris |
description | Inversion, that is, Mg/Mn antisite disorder, in a spinel oxide simultaneously causes blockage of favorable Mg2+ migration paths, raising activation barriers for diffusion, and it reduces the number of redox-active metals, limiting the maximum capacity in the spinel. An inversion-free spinel, MgCr1.5Mn0.5O4, was synthesized by exploiting the different intrinsic crystal field stabilization of redox-active Cr and Mn in the form of a solid solution. The capability of the tailored spinel to reversibly (de)intercalate Mg2+ at high redox potentials was investigated. The decrease in inversion dramatically lowered the electrochemical overpotential and hysteresis and enabled utilization of high potentials at ∼2.9 V (vs Mg/Mg2+) upon re-intercalation of Mg2+. A combination of characterization techniques reveals that the structural, compositional, and redox changes within the spinel oxide were consistent with the observed electrochemical Mg2+ activity. Quantification of selection solely to lattice Mg2+ upon the electrochemical reaction was investigated by monitoring nuclear magnetic resonance signals in isotope 25Mg-enriched spinel oxides. Our findings enhance the understanding of Mg2+ transport within spinel oxide frameworks and provide conclusive evidence for bulk Mg migration in oxide lattices at high redox potentials with minimized electrochemical hysteresis. |
doi_str_mv | 10.1021/acs.chemmater.2c00237 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1879893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h42132211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2147-7f7f45cfc35e09468d6ac0695701a8c3f7658f161d96c7a299c7411d080f540e3</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPIATvqZPdzSY5Su1qodKD9RzCbGJTtrslWUHf3pQWr56GYf5vmPkIuecw41DwR4tphlu339vRxVmBAEUpL8iEiwKYyN0lmYDSklVS1NfkJqUdAM-ompBFYzF0ji46h2McjmsC2o6-fbLl0NNNtH06DHGkoaeWPjufY6yJztH3Q-hdR9ffoXW35MrbLrm7c52Sj2axmb-y1fplOX9aMVvwSjLppa8EeiyFA13Vqq0tQq2FBG4Vll7WQnle81bXKG2hNcqK8xYUeFGBK6fk4bR3SGMwCcPocItD3-erDFdSK13mkDiFMA4pRefNIYa9jT-GgzkKM1mY-RNmzsIyx0_ccbwbvmKfX_mH-QWAxHFG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide</title><source>ACS Publications</source><creator>Kwon, Bob Jin ; Yin, Liang ; Roy, Indrani ; Leon, Noel J ; Kumar, Khagesh ; Kim, Jae Jin ; Han, Jinhyup ; Gim, Jihyeon ; Liao, Chen ; Lapidus, Saul H ; Cabana, Jordi ; Key, Baris</creator><creatorcontrib>Kwon, Bob Jin ; Yin, Liang ; Roy, Indrani ; Leon, Noel J ; Kumar, Khagesh ; Kim, Jae Jin ; Han, Jinhyup ; Gim, Jihyeon ; Liao, Chen ; Lapidus, Saul H ; Cabana, Jordi ; Key, Baris ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Inversion, that is, Mg/Mn antisite disorder, in a spinel oxide simultaneously causes blockage of favorable Mg2+ migration paths, raising activation barriers for diffusion, and it reduces the number of redox-active metals, limiting the maximum capacity in the spinel. An inversion-free spinel, MgCr1.5Mn0.5O4, was synthesized by exploiting the different intrinsic crystal field stabilization of redox-active Cr and Mn in the form of a solid solution. The capability of the tailored spinel to reversibly (de)intercalate Mg2+ at high redox potentials was investigated. The decrease in inversion dramatically lowered the electrochemical overpotential and hysteresis and enabled utilization of high potentials at ∼2.9 V (vs Mg/Mg2+) upon re-intercalation of Mg2+. A combination of characterization techniques reveals that the structural, compositional, and redox changes within the spinel oxide were consistent with the observed electrochemical Mg2+ activity. Quantification of selection solely to lattice Mg2+ upon the electrochemical reaction was investigated by monitoring nuclear magnetic resonance signals in isotope 25Mg-enriched spinel oxides. Our findings enhance the understanding of Mg2+ transport within spinel oxide frameworks and provide conclusive evidence for bulk Mg migration in oxide lattices at high redox potentials with minimized electrochemical hysteresis.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c00237</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Chemistry of materials, 2022-04, Vol.34 (8), p.3789-3797</ispartof><rights>2022 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2147-7f7f45cfc35e09468d6ac0695701a8c3f7658f161d96c7a299c7411d080f540e3</citedby><cites>FETCH-LOGICAL-a2147-7f7f45cfc35e09468d6ac0695701a8c3f7658f161d96c7a299c7411d080f540e3</cites><orcidid>0000-0001-7395-0814 ; 0000-0002-1987-1629 ; 0000-0002-7486-4325 ; 0000-0001-7709-3530 ; 0000-0002-2353-5986 ; 0000-0001-5168-6493 ; 0000000173950814 ; 0000000151686493 ; 0000000219871629 ; 0000000274864325 ; 0000000177093530 ; 0000000223535986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.2c00237$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c00237$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1879893$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Bob Jin</creatorcontrib><creatorcontrib>Yin, Liang</creatorcontrib><creatorcontrib>Roy, Indrani</creatorcontrib><creatorcontrib>Leon, Noel J</creatorcontrib><creatorcontrib>Kumar, Khagesh</creatorcontrib><creatorcontrib>Kim, Jae Jin</creatorcontrib><creatorcontrib>Han, Jinhyup</creatorcontrib><creatorcontrib>Gim, Jihyeon</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Lapidus, Saul H</creatorcontrib><creatorcontrib>Cabana, Jordi</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Inversion, that is, Mg/Mn antisite disorder, in a spinel oxide simultaneously causes blockage of favorable Mg2+ migration paths, raising activation barriers for diffusion, and it reduces the number of redox-active metals, limiting the maximum capacity in the spinel. An inversion-free spinel, MgCr1.5Mn0.5O4, was synthesized by exploiting the different intrinsic crystal field stabilization of redox-active Cr and Mn in the form of a solid solution. The capability of the tailored spinel to reversibly (de)intercalate Mg2+ at high redox potentials was investigated. The decrease in inversion dramatically lowered the electrochemical overpotential and hysteresis and enabled utilization of high potentials at ∼2.9 V (vs Mg/Mg2+) upon re-intercalation of Mg2+. A combination of characterization techniques reveals that the structural, compositional, and redox changes within the spinel oxide were consistent with the observed electrochemical Mg2+ activity. Quantification of selection solely to lattice Mg2+ upon the electrochemical reaction was investigated by monitoring nuclear magnetic resonance signals in isotope 25Mg-enriched spinel oxides. Our findings enhance the understanding of Mg2+ transport within spinel oxide frameworks and provide conclusive evidence for bulk Mg migration in oxide lattices at high redox potentials with minimized electrochemical hysteresis.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPIATvqZPdzSY5Su1qodKD9RzCbGJTtrslWUHf3pQWr56GYf5vmPkIuecw41DwR4tphlu339vRxVmBAEUpL8iEiwKYyN0lmYDSklVS1NfkJqUdAM-ompBFYzF0ji46h2McjmsC2o6-fbLl0NNNtH06DHGkoaeWPjufY6yJztH3Q-hdR9ffoXW35MrbLrm7c52Sj2axmb-y1fplOX9aMVvwSjLppa8EeiyFA13Vqq0tQq2FBG4Vll7WQnle81bXKG2hNcqK8xYUeFGBK6fk4bR3SGMwCcPocItD3-erDFdSK13mkDiFMA4pRefNIYa9jT-GgzkKM1mY-RNmzsIyx0_ccbwbvmKfX_mH-QWAxHFG</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Kwon, Bob Jin</creator><creator>Yin, Liang</creator><creator>Roy, Indrani</creator><creator>Leon, Noel J</creator><creator>Kumar, Khagesh</creator><creator>Kim, Jae Jin</creator><creator>Han, Jinhyup</creator><creator>Gim, Jihyeon</creator><creator>Liao, Chen</creator><creator>Lapidus, Saul H</creator><creator>Cabana, Jordi</creator><creator>Key, Baris</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7395-0814</orcidid><orcidid>https://orcid.org/0000-0002-1987-1629</orcidid><orcidid>https://orcid.org/0000-0002-7486-4325</orcidid><orcidid>https://orcid.org/0000-0001-7709-3530</orcidid><orcidid>https://orcid.org/0000-0002-2353-5986</orcidid><orcidid>https://orcid.org/0000-0001-5168-6493</orcidid><orcidid>https://orcid.org/0000000173950814</orcidid><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000274864325</orcidid><orcidid>https://orcid.org/0000000177093530</orcidid><orcidid>https://orcid.org/0000000223535986</orcidid></search><sort><creationdate>20220426</creationdate><title>Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide</title><author>Kwon, Bob Jin ; Yin, Liang ; Roy, Indrani ; Leon, Noel J ; Kumar, Khagesh ; Kim, Jae Jin ; Han, Jinhyup ; Gim, Jihyeon ; Liao, Chen ; Lapidus, Saul H ; Cabana, Jordi ; Key, Baris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2147-7f7f45cfc35e09468d6ac0695701a8c3f7658f161d96c7a299c7411d080f540e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Bob Jin</creatorcontrib><creatorcontrib>Yin, Liang</creatorcontrib><creatorcontrib>Roy, Indrani</creatorcontrib><creatorcontrib>Leon, Noel J</creatorcontrib><creatorcontrib>Kumar, Khagesh</creatorcontrib><creatorcontrib>Kim, Jae Jin</creatorcontrib><creatorcontrib>Han, Jinhyup</creatorcontrib><creatorcontrib>Gim, Jihyeon</creatorcontrib><creatorcontrib>Liao, Chen</creatorcontrib><creatorcontrib>Lapidus, Saul H</creatorcontrib><creatorcontrib>Cabana, Jordi</creatorcontrib><creatorcontrib>Key, Baris</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Bob Jin</au><au>Yin, Liang</au><au>Roy, Indrani</au><au>Leon, Noel J</au><au>Kumar, Khagesh</au><au>Kim, Jae Jin</au><au>Han, Jinhyup</au><au>Gim, Jihyeon</au><au>Liao, Chen</au><au>Lapidus, Saul H</au><au>Cabana, Jordi</au><au>Key, Baris</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-04-26</date><risdate>2022</risdate><volume>34</volume><issue>8</issue><spage>3789</spage><epage>3797</epage><pages>3789-3797</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Inversion, that is, Mg/Mn antisite disorder, in a spinel oxide simultaneously causes blockage of favorable Mg2+ migration paths, raising activation barriers for diffusion, and it reduces the number of redox-active metals, limiting the maximum capacity in the spinel. An inversion-free spinel, MgCr1.5Mn0.5O4, was synthesized by exploiting the different intrinsic crystal field stabilization of redox-active Cr and Mn in the form of a solid solution. The capability of the tailored spinel to reversibly (de)intercalate Mg2+ at high redox potentials was investigated. The decrease in inversion dramatically lowered the electrochemical overpotential and hysteresis and enabled utilization of high potentials at ∼2.9 V (vs Mg/Mg2+) upon re-intercalation of Mg2+. A combination of characterization techniques reveals that the structural, compositional, and redox changes within the spinel oxide were consistent with the observed electrochemical Mg2+ activity. Quantification of selection solely to lattice Mg2+ upon the electrochemical reaction was investigated by monitoring nuclear magnetic resonance signals in isotope 25Mg-enriched spinel oxides. Our findings enhance the understanding of Mg2+ transport within spinel oxide frameworks and provide conclusive evidence for bulk Mg migration in oxide lattices at high redox potentials with minimized electrochemical hysteresis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c00237</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7395-0814</orcidid><orcidid>https://orcid.org/0000-0002-1987-1629</orcidid><orcidid>https://orcid.org/0000-0002-7486-4325</orcidid><orcidid>https://orcid.org/0000-0001-7709-3530</orcidid><orcidid>https://orcid.org/0000-0002-2353-5986</orcidid><orcidid>https://orcid.org/0000-0001-5168-6493</orcidid><orcidid>https://orcid.org/0000000173950814</orcidid><orcidid>https://orcid.org/0000000151686493</orcidid><orcidid>https://orcid.org/0000000219871629</orcidid><orcidid>https://orcid.org/0000000274864325</orcidid><orcidid>https://orcid.org/0000000177093530</orcidid><orcidid>https://orcid.org/0000000223535986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2022-04, Vol.34 (8), p.3789-3797 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1879893 |
source | ACS Publications |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Electrochemical%20Mg-Ion%20Transport%20in%20a%20Defect-Free%20Spinel%20Oxide&rft.jtitle=Chemistry%20of%20materials&rft.au=Kwon,%20Bob%20Jin&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-04-26&rft.volume=34&rft.issue=8&rft.spage=3789&rft.epage=3797&rft.pages=3789-3797&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c00237&rft_dat=%3Cacs_osti_%3Eh42132211%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |