Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging

The solid-electrolyte interphase (SEI) enables the remarkable capacity retention of lithium-ion batteries, yet a comprehensive quantitative description of the SEI composition remains elusive. Using a combination of differential electrochemical mass spectrometry and mass spectrometry titration, we qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2022-08, Vol.7 (8), p.2734-2744
Hauptverfasser: McShane, Eric J., Bergstrom, Helen K., Weddle, Peter J., Brown, David E., Colclasure, Andrew M., McCloskey, Bryan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2744
container_issue 8
container_start_page 2734
container_title ACS energy letters
container_volume 7
creator McShane, Eric J.
Bergstrom, Helen K.
Weddle, Peter J.
Brown, David E.
Colclasure, Andrew M.
McCloskey, Bryan D.
description The solid-electrolyte interphase (SEI) enables the remarkable capacity retention of lithium-ion batteries, yet a comprehensive quantitative description of the SEI composition remains elusive. Using a combination of differential electrochemical mass spectrometry and mass spectrometry titration, we quantify graphite SEI components formed under electrolytes of varying salt concentrations. We find that, regardless of salt concentration, a conversion of initially deposited lithium ethylene dicarbonate to monocarbonates (likely lithium ethylene monocarbonate) and noncarbonate species occurs, and the extent of this conversion increases with electrolyte aging. We additionally demonstrate that as the concentration increases (up to 2.0 M LiPF6), the SEI becomes progressively thinner with more LiF and less solid carbonates deposited. Finally, we reveal that less dead lithium formation and less solid carbonate deposition occur during prolonged fast charging for higher-concentration electrolytes. Because of the advantages imparted by a thinner SEI, the onset state of charge for lithium plating for the 2.0 M electrolyte is later than that predicted by a standard electrochemical model, underscoring the importance of explicit SEI effects in future electrochemical models.
doi_str_mv 10.1021/acsenergylett.2c01059
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1879455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a681792654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-8dff4f0735769d56436b24349b79bcc840302e92306225fc5ad7e925316f121b3</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgqf0EIbifmsdkZrKU0taCIKKuXIRMJumkTJMhSRfz90baha7kLu7rnMO9B4B7jJYYEfwoVdROh_006JSWRCGMGL8CM0IbVDSYs-tf9S1YxHhACOGqYTlm4OvtJF2yZrJuD7dBjr1NGr77wXbFetAqBT9MebJzSYexl1HDVa-PNqYwQek6aFOEu-MoVYLewY2MKQNk2Ge9O3Bj5BD14pLn4HOz_lg9Fy-v293q6aWQtOKpaDpjSoNqyuqKd6wqadWSkpa8rXmrVFMiiojmhKKKEGYUk12dW0ZxZTDBLZ2Dh7Ouj8mKqPIHqlfeuXy-wE3NS8YyiJ1BKvgYgzZiDPYowyQwEj9Oij9OiouTmYfPvLwWB38KLr_yD-cba3B76Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging</title><source>ACS Publications</source><creator>McShane, Eric J. ; Bergstrom, Helen K. ; Weddle, Peter J. ; Brown, David E. ; Colclasure, Andrew M. ; McCloskey, Bryan D.</creator><creatorcontrib>McShane, Eric J. ; Bergstrom, Helen K. ; Weddle, Peter J. ; Brown, David E. ; Colclasure, Andrew M. ; McCloskey, Bryan D. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>The solid-electrolyte interphase (SEI) enables the remarkable capacity retention of lithium-ion batteries, yet a comprehensive quantitative description of the SEI composition remains elusive. Using a combination of differential electrochemical mass spectrometry and mass spectrometry titration, we quantify graphite SEI components formed under electrolytes of varying salt concentrations. We find that, regardless of salt concentration, a conversion of initially deposited lithium ethylene dicarbonate to monocarbonates (likely lithium ethylene monocarbonate) and noncarbonate species occurs, and the extent of this conversion increases with electrolyte aging. We additionally demonstrate that as the concentration increases (up to 2.0 M LiPF6), the SEI becomes progressively thinner with more LiF and less solid carbonates deposited. Finally, we reveal that less dead lithium formation and less solid carbonate deposition occur during prolonged fast charging for higher-concentration electrolytes. Because of the advantages imparted by a thinner SEI, the onset state of charge for lithium plating for the 2.0 M electrolyte is later than that predicted by a standard electrochemical model, underscoring the importance of explicit SEI effects in future electrochemical models.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.2c01059</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>batteries ; fast charge ; graphite ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; lithium plating ; lithium-ion ; solid-electrolyte interface (SEI)</subject><ispartof>ACS energy letters, 2022-08, Vol.7 (8), p.2734-2744</ispartof><rights>2022 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-8dff4f0735769d56436b24349b79bcc840302e92306225fc5ad7e925316f121b3</citedby><cites>FETCH-LOGICAL-a369t-8dff4f0735769d56436b24349b79bcc840302e92306225fc5ad7e925316f121b3</cites><orcidid>0000-0002-2456-8798 ; 0000-0002-9574-5106 ; 0000-0002-1209-6113 ; 0000-0001-6599-2336 ; 0000000224568798 ; 0000000165992336 ; 0000000295745106 ; 0000000212096113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.2c01059$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.2c01059$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1879455$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McShane, Eric J.</creatorcontrib><creatorcontrib>Bergstrom, Helen K.</creatorcontrib><creatorcontrib>Weddle, Peter J.</creatorcontrib><creatorcontrib>Brown, David E.</creatorcontrib><creatorcontrib>Colclasure, Andrew M.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The solid-electrolyte interphase (SEI) enables the remarkable capacity retention of lithium-ion batteries, yet a comprehensive quantitative description of the SEI composition remains elusive. Using a combination of differential electrochemical mass spectrometry and mass spectrometry titration, we quantify graphite SEI components formed under electrolytes of varying salt concentrations. We find that, regardless of salt concentration, a conversion of initially deposited lithium ethylene dicarbonate to monocarbonates (likely lithium ethylene monocarbonate) and noncarbonate species occurs, and the extent of this conversion increases with electrolyte aging. We additionally demonstrate that as the concentration increases (up to 2.0 M LiPF6), the SEI becomes progressively thinner with more LiF and less solid carbonates deposited. Finally, we reveal that less dead lithium formation and less solid carbonate deposition occur during prolonged fast charging for higher-concentration electrolytes. Because of the advantages imparted by a thinner SEI, the onset state of charge for lithium plating for the 2.0 M electrolyte is later than that predicted by a standard electrochemical model, underscoring the importance of explicit SEI effects in future electrochemical models.</description><subject>batteries</subject><subject>fast charge</subject><subject>graphite</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>lithium plating</subject><subject>lithium-ion</subject><subject>solid-electrolyte interface (SEI)</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgqf0EIbifmsdkZrKU0taCIKKuXIRMJumkTJMhSRfz90baha7kLu7rnMO9B4B7jJYYEfwoVdROh_006JSWRCGMGL8CM0IbVDSYs-tf9S1YxHhACOGqYTlm4OvtJF2yZrJuD7dBjr1NGr77wXbFetAqBT9MebJzSYexl1HDVa-PNqYwQek6aFOEu-MoVYLewY2MKQNk2Ge9O3Bj5BD14pLn4HOz_lg9Fy-v293q6aWQtOKpaDpjSoNqyuqKd6wqadWSkpa8rXmrVFMiiojmhKKKEGYUk12dW0ZxZTDBLZ2Dh7Ouj8mKqPIHqlfeuXy-wE3NS8YyiJ1BKvgYgzZiDPYowyQwEj9Oij9OiouTmYfPvLwWB38KLr_yD-cba3B76Q</recordid><startdate>20220812</startdate><enddate>20220812</enddate><creator>McShane, Eric J.</creator><creator>Bergstrom, Helen K.</creator><creator>Weddle, Peter J.</creator><creator>Brown, David E.</creator><creator>Colclasure, Andrew M.</creator><creator>McCloskey, Bryan D.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2456-8798</orcidid><orcidid>https://orcid.org/0000-0002-9574-5106</orcidid><orcidid>https://orcid.org/0000-0002-1209-6113</orcidid><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000000224568798</orcidid><orcidid>https://orcid.org/0000000165992336</orcidid><orcidid>https://orcid.org/0000000295745106</orcidid><orcidid>https://orcid.org/0000000212096113</orcidid></search><sort><creationdate>20220812</creationdate><title>Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging</title><author>McShane, Eric J. ; Bergstrom, Helen K. ; Weddle, Peter J. ; Brown, David E. ; Colclasure, Andrew M. ; McCloskey, Bryan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-8dff4f0735769d56436b24349b79bcc840302e92306225fc5ad7e925316f121b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>batteries</topic><topic>fast charge</topic><topic>graphite</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>lithium plating</topic><topic>lithium-ion</topic><topic>solid-electrolyte interface (SEI)</topic><toplevel>online_resources</toplevel><creatorcontrib>McShane, Eric J.</creatorcontrib><creatorcontrib>Bergstrom, Helen K.</creatorcontrib><creatorcontrib>Weddle, Peter J.</creatorcontrib><creatorcontrib>Brown, David E.</creatorcontrib><creatorcontrib>Colclasure, Andrew M.</creatorcontrib><creatorcontrib>McCloskey, Bryan D.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McShane, Eric J.</au><au>Bergstrom, Helen K.</au><au>Weddle, Peter J.</au><au>Brown, David E.</au><au>Colclasure, Andrew M.</au><au>McCloskey, Bryan D.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2022-08-12</date><risdate>2022</risdate><volume>7</volume><issue>8</issue><spage>2734</spage><epage>2744</epage><pages>2734-2744</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The solid-electrolyte interphase (SEI) enables the remarkable capacity retention of lithium-ion batteries, yet a comprehensive quantitative description of the SEI composition remains elusive. Using a combination of differential electrochemical mass spectrometry and mass spectrometry titration, we quantify graphite SEI components formed under electrolytes of varying salt concentrations. We find that, regardless of salt concentration, a conversion of initially deposited lithium ethylene dicarbonate to monocarbonates (likely lithium ethylene monocarbonate) and noncarbonate species occurs, and the extent of this conversion increases with electrolyte aging. We additionally demonstrate that as the concentration increases (up to 2.0 M LiPF6), the SEI becomes progressively thinner with more LiF and less solid carbonates deposited. Finally, we reveal that less dead lithium formation and less solid carbonate deposition occur during prolonged fast charging for higher-concentration electrolytes. Because of the advantages imparted by a thinner SEI, the onset state of charge for lithium plating for the 2.0 M electrolyte is later than that predicted by a standard electrochemical model, underscoring the importance of explicit SEI effects in future electrochemical models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.2c01059</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2456-8798</orcidid><orcidid>https://orcid.org/0000-0002-9574-5106</orcidid><orcidid>https://orcid.org/0000-0002-1209-6113</orcidid><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000000224568798</orcidid><orcidid>https://orcid.org/0000000165992336</orcidid><orcidid>https://orcid.org/0000000295745106</orcidid><orcidid>https://orcid.org/0000000212096113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2022-08, Vol.7 (8), p.2734-2744
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1879455
source ACS Publications
subjects batteries
fast charge
graphite
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
lithium plating
lithium-ion
solid-electrolyte interface (SEI)
title Quantifying Graphite Solid-Electrolyte Interphase Chemistry and its Impact on Fast Charging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20Graphite%20Solid-Electrolyte%20Interphase%20Chemistry%20and%20its%20Impact%20on%20Fast%20Charging&rft.jtitle=ACS%20energy%20letters&rft.au=McShane,%20Eric%20J.&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2022-08-12&rft.volume=7&rft.issue=8&rft.spage=2734&rft.epage=2744&rft.pages=2734-2744&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.2c01059&rft_dat=%3Cacs_osti_%3Ea681792654%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true