Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event

Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental radioactivity 2022-09, Vol.250, p.106905-106905, Article 106905
Hauptverfasser: Neil, Chelsea W., Boukhalfa, Hakim, Xu, Hongwu, Ware, S. Douglas, Ortiz, John, Avendaño, Sofia, Harp, Dylan, Broome, Scott, Hjelm, Rex P., Mao, Yimin, Roback, Robert, Brug, William P., Stauffer, Philip H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106905
container_issue
container_start_page 106905
container_title Journal of environmental radioactivity
container_volume 250
creator Neil, Chelsea W.
Boukhalfa, Hakim
Xu, Hongwu
Ware, S. Douglas
Ortiz, John
Avendaño, Sofia
Harp, Dylan
Broome, Scott
Hjelm, Rex P.
Mao, Yimin
Roback, Robert
Brug, William P.
Stauffer, Philip H.
description Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers. •Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.
doi_str_mv 10.1016/j.jenvrad.2022.106905
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1879386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0265931X22000959</els_id><sourcerecordid>2668218785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NY7Fr9E5TgycusSWYnmfEipWgtFHppwVvIZF66WbLJmh9bKvi_m2FWr56SPD7fvMf7IPSOkjUllH_arXfgj1FNa0YYqzU-kO4FWtFeDA0VhLxEK8J41wwt_XGOXqe0I6TWe_YKnbddN_Qbwlfo97VKeLLGlGSDx3kbQ3nc4qOKVo3uuXlSGWKTVC6x3ib8C4Kz2WqcizGf8c3-4KxWuWYTNiHiHJVPhxBzfTkXnqx_xAqnMqYSjdKAfdEOVMRwBJ_foDOjXIK3p_MCPXz7en_1vbm9u765urxt1Iaz3AhN2aSgb3U38o3uNkxMehC0Hbgwpm25mIgmQwdqIKOGVvSCghCGAeE98KG9QB-Wf0PKViZtM-itDt6DznLeWNvzCn1coEMMPwukLPc2aXBOeQglScZ5zyrcdxXtFlTHkFIEIw_R7lV8lpTIWY_cyZMeOeuRi56ae39qUcY9TP9Sf31U4MsCQN3G0UKchwWvYbJxnnUK9j8t_gDiy6Yh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668218785</pqid></control><display><type>article</type><title>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</title><source>Elsevier ScienceDirect Journals</source><creator>Neil, Chelsea W. ; Boukhalfa, Hakim ; Xu, Hongwu ; Ware, S. Douglas ; Ortiz, John ; Avendaño, Sofia ; Harp, Dylan ; Broome, Scott ; Hjelm, Rex P. ; Mao, Yimin ; Roback, Robert ; Brug, William P. ; Stauffer, Philip H.</creator><creatorcontrib>Neil, Chelsea W. ; Boukhalfa, Hakim ; Xu, Hongwu ; Ware, S. Douglas ; Ortiz, John ; Avendaño, Sofia ; Harp, Dylan ; Broome, Scott ; Hjelm, Rex P. ; Mao, Yimin ; Roback, Robert ; Brug, William P. ; Stauffer, Philip H. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers. •Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.</description><identifier>ISSN: 0265-931X</identifier><identifier>EISSN: 1879-1700</identifier><identifier>DOI: 10.1016/j.jenvrad.2022.106905</identifier><identifier>PMID: 35598406</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Diffusion ; Noble gases ; Nonproliferation ; NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION ; Underground nuclear explosion ; Zeolites</subject><ispartof>Journal of environmental radioactivity, 2022-09, Vol.250, p.106905-106905, Article 106905</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</citedby><cites>FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</cites><orcidid>0000-0001-9777-8000 ; 0000-0002-2101-6584 ; 0000-0002-6976-221X ; 0000-0002-2294-119X ; 0000-0002-7679-157X ; 0000000207936923 ; 0000000235958548 ; 000000026976221X ; 0000000338336039 ; 000000022294119X ; 0000000163838503 ; 0000000197778000 ; 0000000221016584 ; 000000027679157X ; 0000000327481580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0265931X22000959$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35598406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1879386$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Neil, Chelsea W.</creatorcontrib><creatorcontrib>Boukhalfa, Hakim</creatorcontrib><creatorcontrib>Xu, Hongwu</creatorcontrib><creatorcontrib>Ware, S. Douglas</creatorcontrib><creatorcontrib>Ortiz, John</creatorcontrib><creatorcontrib>Avendaño, Sofia</creatorcontrib><creatorcontrib>Harp, Dylan</creatorcontrib><creatorcontrib>Broome, Scott</creatorcontrib><creatorcontrib>Hjelm, Rex P.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Roback, Robert</creatorcontrib><creatorcontrib>Brug, William P.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</title><title>Journal of environmental radioactivity</title><addtitle>J Environ Radioact</addtitle><description>Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers. •Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.</description><subject>Diffusion</subject><subject>Noble gases</subject><subject>Nonproliferation</subject><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><subject>Underground nuclear explosion</subject><subject>Zeolites</subject><issn>0265-931X</issn><issn>1879-1700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4NY7Fr9E5TgycusSWYnmfEipWgtFHppwVvIZF66WbLJmh9bKvi_m2FWr56SPD7fvMf7IPSOkjUllH_arXfgj1FNa0YYqzU-kO4FWtFeDA0VhLxEK8J41wwt_XGOXqe0I6TWe_YKnbddN_Qbwlfo97VKeLLGlGSDx3kbQ3nc4qOKVo3uuXlSGWKTVC6x3ib8C4Kz2WqcizGf8c3-4KxWuWYTNiHiHJVPhxBzfTkXnqx_xAqnMqYSjdKAfdEOVMRwBJ_foDOjXIK3p_MCPXz7en_1vbm9u765urxt1Iaz3AhN2aSgb3U38o3uNkxMehC0Hbgwpm25mIgmQwdqIKOGVvSCghCGAeE98KG9QB-Wf0PKViZtM-itDt6DznLeWNvzCn1coEMMPwukLPc2aXBOeQglScZ5zyrcdxXtFlTHkFIEIw_R7lV8lpTIWY_cyZMeOeuRi56ae39qUcY9TP9Sf31U4MsCQN3G0UKchwWvYbJxnnUK9j8t_gDiy6Yh</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Neil, Chelsea W.</creator><creator>Boukhalfa, Hakim</creator><creator>Xu, Hongwu</creator><creator>Ware, S. Douglas</creator><creator>Ortiz, John</creator><creator>Avendaño, Sofia</creator><creator>Harp, Dylan</creator><creator>Broome, Scott</creator><creator>Hjelm, Rex P.</creator><creator>Mao, Yimin</creator><creator>Roback, Robert</creator><creator>Brug, William P.</creator><creator>Stauffer, Philip H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9777-8000</orcidid><orcidid>https://orcid.org/0000-0002-2101-6584</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-2294-119X</orcidid><orcidid>https://orcid.org/0000-0002-7679-157X</orcidid><orcidid>https://orcid.org/0000000207936923</orcidid><orcidid>https://orcid.org/0000000235958548</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000338336039</orcidid><orcidid>https://orcid.org/000000022294119X</orcidid><orcidid>https://orcid.org/0000000163838503</orcidid><orcidid>https://orcid.org/0000000197778000</orcidid><orcidid>https://orcid.org/0000000221016584</orcidid><orcidid>https://orcid.org/000000027679157X</orcidid><orcidid>https://orcid.org/0000000327481580</orcidid></search><sort><creationdate>20220901</creationdate><title>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</title><author>Neil, Chelsea W. ; Boukhalfa, Hakim ; Xu, Hongwu ; Ware, S. Douglas ; Ortiz, John ; Avendaño, Sofia ; Harp, Dylan ; Broome, Scott ; Hjelm, Rex P. ; Mao, Yimin ; Roback, Robert ; Brug, William P. ; Stauffer, Philip H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diffusion</topic><topic>Noble gases</topic><topic>Nonproliferation</topic><topic>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</topic><topic>Underground nuclear explosion</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neil, Chelsea W.</creatorcontrib><creatorcontrib>Boukhalfa, Hakim</creatorcontrib><creatorcontrib>Xu, Hongwu</creatorcontrib><creatorcontrib>Ware, S. Douglas</creatorcontrib><creatorcontrib>Ortiz, John</creatorcontrib><creatorcontrib>Avendaño, Sofia</creatorcontrib><creatorcontrib>Harp, Dylan</creatorcontrib><creatorcontrib>Broome, Scott</creatorcontrib><creatorcontrib>Hjelm, Rex P.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Roback, Robert</creatorcontrib><creatorcontrib>Brug, William P.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of environmental radioactivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neil, Chelsea W.</au><au>Boukhalfa, Hakim</au><au>Xu, Hongwu</au><au>Ware, S. Douglas</au><au>Ortiz, John</au><au>Avendaño, Sofia</au><au>Harp, Dylan</au><au>Broome, Scott</au><au>Hjelm, Rex P.</au><au>Mao, Yimin</au><au>Roback, Robert</au><au>Brug, William P.</au><au>Stauffer, Philip H.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</atitle><jtitle>Journal of environmental radioactivity</jtitle><addtitle>J Environ Radioact</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>250</volume><spage>106905</spage><epage>106905</epage><pages>106905-106905</pages><artnum>106905</artnum><issn>0265-931X</issn><eissn>1879-1700</eissn><abstract>Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers. •Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35598406</pmid><doi>10.1016/j.jenvrad.2022.106905</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9777-8000</orcidid><orcidid>https://orcid.org/0000-0002-2101-6584</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-2294-119X</orcidid><orcidid>https://orcid.org/0000-0002-7679-157X</orcidid><orcidid>https://orcid.org/0000000207936923</orcidid><orcidid>https://orcid.org/0000000235958548</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000338336039</orcidid><orcidid>https://orcid.org/000000022294119X</orcidid><orcidid>https://orcid.org/0000000163838503</orcidid><orcidid>https://orcid.org/0000000197778000</orcidid><orcidid>https://orcid.org/0000000221016584</orcidid><orcidid>https://orcid.org/000000027679157X</orcidid><orcidid>https://orcid.org/0000000327481580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-931X
ispartof Journal of environmental radioactivity, 2022-09, Vol.250, p.106905-106905, Article 106905
issn 0265-931X
1879-1700
language eng
recordid cdi_osti_scitechconnect_1879386
source Elsevier ScienceDirect Journals
subjects Diffusion
Noble gases
Nonproliferation
NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION
Underground nuclear explosion
Zeolites
title Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20diffusion%20through%20variably-water-saturated%20zeolitic%20tuff:%20Implications%20for%20transport%20following%20a%20subsurface%20nuclear%20event&rft.jtitle=Journal%20of%20environmental%20radioactivity&rft.au=Neil,%20Chelsea%20W.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-09-01&rft.volume=250&rft.spage=106905&rft.epage=106905&rft.pages=106905-106905&rft.artnum=106905&rft.issn=0265-931X&rft.eissn=1879-1700&rft_id=info:doi/10.1016/j.jenvrad.2022.106905&rft_dat=%3Cproquest_osti_%3E2668218785%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668218785&rft_id=info:pmid/35598406&rft_els_id=S0265931X22000959&rfr_iscdi=true