Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event
Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understand...
Gespeichert in:
Veröffentlicht in: | Journal of environmental radioactivity 2022-09, Vol.250, p.106905-106905, Article 106905 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106905 |
---|---|
container_issue | |
container_start_page | 106905 |
container_title | Journal of environmental radioactivity |
container_volume | 250 |
creator | Neil, Chelsea W. Boukhalfa, Hakim Xu, Hongwu Ware, S. Douglas Ortiz, John Avendaño, Sofia Harp, Dylan Broome, Scott Hjelm, Rex P. Mao, Yimin Roback, Robert Brug, William P. Stauffer, Philip H. |
description | Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.
•Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies. |
doi_str_mv | 10.1016/j.jenvrad.2022.106905 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1879386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0265931X22000959</els_id><sourcerecordid>2668218785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NY7Fr9E5TgycusSWYnmfEipWgtFHppwVvIZF66WbLJmh9bKvi_m2FWr56SPD7fvMf7IPSOkjUllH_arXfgj1FNa0YYqzU-kO4FWtFeDA0VhLxEK8J41wwt_XGOXqe0I6TWe_YKnbddN_Qbwlfo97VKeLLGlGSDx3kbQ3nc4qOKVo3uuXlSGWKTVC6x3ib8C4Kz2WqcizGf8c3-4KxWuWYTNiHiHJVPhxBzfTkXnqx_xAqnMqYSjdKAfdEOVMRwBJ_foDOjXIK3p_MCPXz7en_1vbm9u765urxt1Iaz3AhN2aSgb3U38o3uNkxMehC0Hbgwpm25mIgmQwdqIKOGVvSCghCGAeE98KG9QB-Wf0PKViZtM-itDt6DznLeWNvzCn1coEMMPwukLPc2aXBOeQglScZ5zyrcdxXtFlTHkFIEIw_R7lV8lpTIWY_cyZMeOeuRi56ae39qUcY9TP9Sf31U4MsCQN3G0UKchwWvYbJxnnUK9j8t_gDiy6Yh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668218785</pqid></control><display><type>article</type><title>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</title><source>Elsevier ScienceDirect Journals</source><creator>Neil, Chelsea W. ; Boukhalfa, Hakim ; Xu, Hongwu ; Ware, S. Douglas ; Ortiz, John ; Avendaño, Sofia ; Harp, Dylan ; Broome, Scott ; Hjelm, Rex P. ; Mao, Yimin ; Roback, Robert ; Brug, William P. ; Stauffer, Philip H.</creator><creatorcontrib>Neil, Chelsea W. ; Boukhalfa, Hakim ; Xu, Hongwu ; Ware, S. Douglas ; Ortiz, John ; Avendaño, Sofia ; Harp, Dylan ; Broome, Scott ; Hjelm, Rex P. ; Mao, Yimin ; Roback, Robert ; Brug, William P. ; Stauffer, Philip H. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.
•Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.</description><identifier>ISSN: 0265-931X</identifier><identifier>EISSN: 1879-1700</identifier><identifier>DOI: 10.1016/j.jenvrad.2022.106905</identifier><identifier>PMID: 35598406</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Diffusion ; Noble gases ; Nonproliferation ; NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION ; Underground nuclear explosion ; Zeolites</subject><ispartof>Journal of environmental radioactivity, 2022-09, Vol.250, p.106905-106905, Article 106905</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</citedby><cites>FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</cites><orcidid>0000-0001-9777-8000 ; 0000-0002-2101-6584 ; 0000-0002-6976-221X ; 0000-0002-2294-119X ; 0000-0002-7679-157X ; 0000000207936923 ; 0000000235958548 ; 000000026976221X ; 0000000338336039 ; 000000022294119X ; 0000000163838503 ; 0000000197778000 ; 0000000221016584 ; 000000027679157X ; 0000000327481580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0265931X22000959$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35598406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1879386$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Neil, Chelsea W.</creatorcontrib><creatorcontrib>Boukhalfa, Hakim</creatorcontrib><creatorcontrib>Xu, Hongwu</creatorcontrib><creatorcontrib>Ware, S. Douglas</creatorcontrib><creatorcontrib>Ortiz, John</creatorcontrib><creatorcontrib>Avendaño, Sofia</creatorcontrib><creatorcontrib>Harp, Dylan</creatorcontrib><creatorcontrib>Broome, Scott</creatorcontrib><creatorcontrib>Hjelm, Rex P.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Roback, Robert</creatorcontrib><creatorcontrib>Brug, William P.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</title><title>Journal of environmental radioactivity</title><addtitle>J Environ Radioact</addtitle><description>Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.
•Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.</description><subject>Diffusion</subject><subject>Noble gases</subject><subject>Nonproliferation</subject><subject>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</subject><subject>Underground nuclear explosion</subject><subject>Zeolites</subject><issn>0265-931X</issn><issn>1879-1700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4NY7Fr9E5TgycusSWYnmfEipWgtFHppwVvIZF66WbLJmh9bKvi_m2FWr56SPD7fvMf7IPSOkjUllH_arXfgj1FNa0YYqzU-kO4FWtFeDA0VhLxEK8J41wwt_XGOXqe0I6TWe_YKnbddN_Qbwlfo97VKeLLGlGSDx3kbQ3nc4qOKVo3uuXlSGWKTVC6x3ib8C4Kz2WqcizGf8c3-4KxWuWYTNiHiHJVPhxBzfTkXnqx_xAqnMqYSjdKAfdEOVMRwBJ_foDOjXIK3p_MCPXz7en_1vbm9u765urxt1Iaz3AhN2aSgb3U38o3uNkxMehC0Hbgwpm25mIgmQwdqIKOGVvSCghCGAeE98KG9QB-Wf0PKViZtM-itDt6DznLeWNvzCn1coEMMPwukLPc2aXBOeQglScZ5zyrcdxXtFlTHkFIEIw_R7lV8lpTIWY_cyZMeOeuRi56ae39qUcY9TP9Sf31U4MsCQN3G0UKchwWvYbJxnnUK9j8t_gDiy6Yh</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Neil, Chelsea W.</creator><creator>Boukhalfa, Hakim</creator><creator>Xu, Hongwu</creator><creator>Ware, S. Douglas</creator><creator>Ortiz, John</creator><creator>Avendaño, Sofia</creator><creator>Harp, Dylan</creator><creator>Broome, Scott</creator><creator>Hjelm, Rex P.</creator><creator>Mao, Yimin</creator><creator>Roback, Robert</creator><creator>Brug, William P.</creator><creator>Stauffer, Philip H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9777-8000</orcidid><orcidid>https://orcid.org/0000-0002-2101-6584</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-2294-119X</orcidid><orcidid>https://orcid.org/0000-0002-7679-157X</orcidid><orcidid>https://orcid.org/0000000207936923</orcidid><orcidid>https://orcid.org/0000000235958548</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000338336039</orcidid><orcidid>https://orcid.org/000000022294119X</orcidid><orcidid>https://orcid.org/0000000163838503</orcidid><orcidid>https://orcid.org/0000000197778000</orcidid><orcidid>https://orcid.org/0000000221016584</orcidid><orcidid>https://orcid.org/000000027679157X</orcidid><orcidid>https://orcid.org/0000000327481580</orcidid></search><sort><creationdate>20220901</creationdate><title>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</title><author>Neil, Chelsea W. ; Boukhalfa, Hakim ; Xu, Hongwu ; Ware, S. Douglas ; Ortiz, John ; Avendaño, Sofia ; Harp, Dylan ; Broome, Scott ; Hjelm, Rex P. ; Mao, Yimin ; Roback, Robert ; Brug, William P. ; Stauffer, Philip H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-7c12dae83c5b64c5427dc9713967ff3367d0c095ea90bce37871e77f2e068e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diffusion</topic><topic>Noble gases</topic><topic>Nonproliferation</topic><topic>NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION</topic><topic>Underground nuclear explosion</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neil, Chelsea W.</creatorcontrib><creatorcontrib>Boukhalfa, Hakim</creatorcontrib><creatorcontrib>Xu, Hongwu</creatorcontrib><creatorcontrib>Ware, S. Douglas</creatorcontrib><creatorcontrib>Ortiz, John</creatorcontrib><creatorcontrib>Avendaño, Sofia</creatorcontrib><creatorcontrib>Harp, Dylan</creatorcontrib><creatorcontrib>Broome, Scott</creatorcontrib><creatorcontrib>Hjelm, Rex P.</creatorcontrib><creatorcontrib>Mao, Yimin</creatorcontrib><creatorcontrib>Roback, Robert</creatorcontrib><creatorcontrib>Brug, William P.</creatorcontrib><creatorcontrib>Stauffer, Philip H.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of environmental radioactivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neil, Chelsea W.</au><au>Boukhalfa, Hakim</au><au>Xu, Hongwu</au><au>Ware, S. Douglas</au><au>Ortiz, John</au><au>Avendaño, Sofia</au><au>Harp, Dylan</au><au>Broome, Scott</au><au>Hjelm, Rex P.</au><au>Mao, Yimin</au><au>Roback, Robert</au><au>Brug, William P.</au><au>Stauffer, Philip H.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event</atitle><jtitle>Journal of environmental radioactivity</jtitle><addtitle>J Environ Radioact</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>250</volume><spage>106905</spage><epage>106905</epage><pages>106905-106905</pages><artnum>106905</artnum><issn>0265-931X</issn><eissn>1879-1700</eissn><abstract>Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.
•Xe, Kr, and SF6 diffusion through zeolitic tuff are measured.•Preferential sorption interactions between Xe and zeolites slows Xe breakthrough.•Low partial water saturation greatly reduces Xe sorption by zeolites.•Caution is advised for using SF6 as a tracer to predict Xe transport in zeolite-containing lithologies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35598406</pmid><doi>10.1016/j.jenvrad.2022.106905</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9777-8000</orcidid><orcidid>https://orcid.org/0000-0002-2101-6584</orcidid><orcidid>https://orcid.org/0000-0002-6976-221X</orcidid><orcidid>https://orcid.org/0000-0002-2294-119X</orcidid><orcidid>https://orcid.org/0000-0002-7679-157X</orcidid><orcidid>https://orcid.org/0000000207936923</orcidid><orcidid>https://orcid.org/0000000235958548</orcidid><orcidid>https://orcid.org/000000026976221X</orcidid><orcidid>https://orcid.org/0000000338336039</orcidid><orcidid>https://orcid.org/000000022294119X</orcidid><orcidid>https://orcid.org/0000000163838503</orcidid><orcidid>https://orcid.org/0000000197778000</orcidid><orcidid>https://orcid.org/0000000221016584</orcidid><orcidid>https://orcid.org/000000027679157X</orcidid><orcidid>https://orcid.org/0000000327481580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-931X |
ispartof | Journal of environmental radioactivity, 2022-09, Vol.250, p.106905-106905, Article 106905 |
issn | 0265-931X 1879-1700 |
language | eng |
recordid | cdi_osti_scitechconnect_1879386 |
source | Elsevier ScienceDirect Journals |
subjects | Diffusion Noble gases Nonproliferation NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION Underground nuclear explosion Zeolites |
title | Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20diffusion%20through%20variably-water-saturated%20zeolitic%20tuff:%20Implications%20for%20transport%20following%20a%20subsurface%20nuclear%20event&rft.jtitle=Journal%20of%20environmental%20radioactivity&rft.au=Neil,%20Chelsea%20W.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-09-01&rft.volume=250&rft.spage=106905&rft.epage=106905&rft.pages=106905-106905&rft.artnum=106905&rft.issn=0265-931X&rft.eissn=1879-1700&rft_id=info:doi/10.1016/j.jenvrad.2022.106905&rft_dat=%3Cproquest_osti_%3E2668218785%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2668218785&rft_id=info:pmid/35598406&rft_els_id=S0265931X22000959&rfr_iscdi=true |