Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”

Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-05, Vol.126 (20), p.3090-3100
Hauptverfasser: Jiang, Jun, Ye, Hong-Zhou, Nauta, Klaas, Van Voorhis, Troy, Schmidt, Timothy W., Field, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3100
container_issue 20
container_start_page 3090
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 126
creator Jiang, Jun
Ye, Hong-Zhou
Nauta, Klaas
Van Voorhis, Troy
Schmidt, Timothy W.
Field, Robert W.
description Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.
doi_str_mv 10.1021/acs.jpca.2c00495
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1877979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664804122</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-1c39e56cf448184049dbe05f8d17b04f6ef102569f3de0e15499d815eccb416d3</originalsourceid><addsrcrecordid>eNotkLFOwzAQhi0EEqWwM1pMDKTYjp3EbKgFilQEEoWFwXKcS-sqdUrtDGx9EHi5PgmGdvpPp0-n_z6EzikZUMLotTZ-sFgZPWCGEC7FAepRwUgiGBWHcSaFTESWymN04v2CEEJTxnvoY2R1qYM1-F034Awk47YB_Bp0AI-tw2EOeMjwU9yaroEbvN18v3QhWDfD4265Cl94tItpO4NIr_HtTFu33fycoqNaNx7O9tlHb_d30-E4mTw_PA5vJ4lmjIeEmlSCyEzNeUELHstXJRBRFxXNS8LrDOr4ochknVZAgAouZVVQAcaUnGZV2kcXu7utD1Z5YwOYuWmdAxMULfJc5jJClztotW4_O_BBLa030DTaQdt5xbKMF4RTxiJ6tUOjU7Vou7WL7RUl6k-0-l9G0WovOv0Fn3pzCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664804122</pqid></control><display><type>article</type><title>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</title><source>ACS Publications</source><creator>Jiang, Jun ; Ye, Hong-Zhou ; Nauta, Klaas ; Van Voorhis, Troy ; Schmidt, Timothy W. ; Field, Robert W.</creator><creatorcontrib>Jiang, Jun ; Ye, Hong-Zhou ; Nauta, Klaas ; Van Voorhis, Troy ; Schmidt, Timothy W. ; Field, Robert W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.2c00495</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters ; ab initio calculations ; ASTRONOMY AND ASTROPHYSICS ; ATOMIC AND MOLECULAR PHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; electronic structure ; energy ; group theory ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; matrix elements</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2022-05, Vol.126 (20), p.3090-3100</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3714-2753 ; 0000-0001-7111-0176 ; 0000-0001-6691-1438 ; 0000-0002-7609-4205 ; 0000-0002-3526-3797 ; 0000000237142753 ; 0000000166911438 ; 0000000171110176 ; 0000000235263797 ; 0000000276094205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.2c00495$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.2c00495$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877979$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Ye, Hong-Zhou</creatorcontrib><creatorcontrib>Nauta, Klaas</creatorcontrib><creatorcontrib>Van Voorhis, Troy</creatorcontrib><creatorcontrib>Schmidt, Timothy W.</creatorcontrib><creatorcontrib>Field, Robert W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><subject>ab initio calculations</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>electronic structure</subject><subject>energy</subject><subject>group theory</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>matrix elements</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAQhi0EEqWwM1pMDKTYjp3EbKgFilQEEoWFwXKcS-sqdUrtDGx9EHi5PgmGdvpPp0-n_z6EzikZUMLotTZ-sFgZPWCGEC7FAepRwUgiGBWHcSaFTESWymN04v2CEEJTxnvoY2R1qYM1-F034Awk47YB_Bp0AI-tw2EOeMjwU9yaroEbvN18v3QhWDfD4265Cl94tItpO4NIr_HtTFu33fycoqNaNx7O9tlHb_d30-E4mTw_PA5vJ4lmjIeEmlSCyEzNeUELHstXJRBRFxXNS8LrDOr4ochknVZAgAouZVVQAcaUnGZV2kcXu7utD1Z5YwOYuWmdAxMULfJc5jJClztotW4_O_BBLa030DTaQdt5xbKMF4RTxiJ6tUOjU7Vou7WL7RUl6k-0-l9G0WovOv0Fn3pzCg</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Jiang, Jun</creator><creator>Ye, Hong-Zhou</creator><creator>Nauta, Klaas</creator><creator>Van Voorhis, Troy</creator><creator>Schmidt, Timothy W.</creator><creator>Field, Robert W.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3714-2753</orcidid><orcidid>https://orcid.org/0000-0001-7111-0176</orcidid><orcidid>https://orcid.org/0000-0001-6691-1438</orcidid><orcidid>https://orcid.org/0000-0002-7609-4205</orcidid><orcidid>https://orcid.org/0000-0002-3526-3797</orcidid><orcidid>https://orcid.org/0000000237142753</orcidid><orcidid>https://orcid.org/0000000166911438</orcidid><orcidid>https://orcid.org/0000000171110176</orcidid><orcidid>https://orcid.org/0000000235263797</orcidid><orcidid>https://orcid.org/0000000276094205</orcidid></search><sort><creationdate>20220526</creationdate><title>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</title><author>Jiang, Jun ; Ye, Hong-Zhou ; Nauta, Klaas ; Van Voorhis, Troy ; Schmidt, Timothy W. ; Field, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-1c39e56cf448184049dbe05f8d17b04f6ef102569f3de0e15499d815eccb416d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><topic>ab initio calculations</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>electronic structure</topic><topic>energy</topic><topic>group theory</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>matrix elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Ye, Hong-Zhou</creatorcontrib><creatorcontrib>Nauta, Klaas</creatorcontrib><creatorcontrib>Van Voorhis, Troy</creatorcontrib><creatorcontrib>Schmidt, Timothy W.</creatorcontrib><creatorcontrib>Field, Robert W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jun</au><au>Ye, Hong-Zhou</au><au>Nauta, Klaas</au><au>Van Voorhis, Troy</au><au>Schmidt, Timothy W.</au><au>Field, Robert W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2022-05-26</date><risdate>2022</risdate><volume>126</volume><issue>20</issue><spage>3090</spage><epage>3100</epage><pages>3090-3100</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.2c00495</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3714-2753</orcidid><orcidid>https://orcid.org/0000-0001-7111-0176</orcidid><orcidid>https://orcid.org/0000-0001-6691-1438</orcidid><orcidid>https://orcid.org/0000-0002-7609-4205</orcidid><orcidid>https://orcid.org/0000-0002-3526-3797</orcidid><orcidid>https://orcid.org/0000000237142753</orcidid><orcidid>https://orcid.org/0000000166911438</orcidid><orcidid>https://orcid.org/0000000171110176</orcidid><orcidid>https://orcid.org/0000000235263797</orcidid><orcidid>https://orcid.org/0000000276094205</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2022-05, Vol.126 (20), p.3090-3100
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1877979
source ACS Publications
subjects A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
ab initio calculations
ASTRONOMY AND ASTROPHYSICS
ATOMIC AND MOLECULAR PHYSICS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
electronic structure
energy
group theory
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
matrix elements
title Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diabatic%20Valence-Hole%20States%20in%20the%20C2%20Molecule:%20%E2%80%9CPutting%20Humpty%20Dumpty%20Together%20Again%E2%80%9D&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Jiang,%20Jun&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-05-26&rft.volume=126&rft.issue=20&rft.spage=3090&rft.epage=3100&rft.pages=3090-3100&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.2c00495&rft_dat=%3Cproquest_osti_%3E2664804122%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664804122&rft_id=info:pmid/&rfr_iscdi=true