Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”
Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state di...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2022-05, Vol.126 (20), p.3090-3100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3100 |
---|---|
container_issue | 20 |
container_start_page | 3090 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 126 |
creator | Jiang, Jun Ye, Hong-Zhou Nauta, Klaas Van Voorhis, Troy Schmidt, Timothy W. Field, Robert W. |
description | Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2. |
doi_str_mv | 10.1021/acs.jpca.2c00495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1877979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664804122</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-1c39e56cf448184049dbe05f8d17b04f6ef102569f3de0e15499d815eccb416d3</originalsourceid><addsrcrecordid>eNotkLFOwzAQhi0EEqWwM1pMDKTYjp3EbKgFilQEEoWFwXKcS-sqdUrtDGx9EHi5PgmGdvpPp0-n_z6EzikZUMLotTZ-sFgZPWCGEC7FAepRwUgiGBWHcSaFTESWymN04v2CEEJTxnvoY2R1qYM1-F034Awk47YB_Bp0AI-tw2EOeMjwU9yaroEbvN18v3QhWDfD4265Cl94tItpO4NIr_HtTFu33fycoqNaNx7O9tlHb_d30-E4mTw_PA5vJ4lmjIeEmlSCyEzNeUELHstXJRBRFxXNS8LrDOr4ochknVZAgAouZVVQAcaUnGZV2kcXu7utD1Z5YwOYuWmdAxMULfJc5jJClztotW4_O_BBLa030DTaQdt5xbKMF4RTxiJ6tUOjU7Vou7WL7RUl6k-0-l9G0WovOv0Fn3pzCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664804122</pqid></control><display><type>article</type><title>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</title><source>ACS Publications</source><creator>Jiang, Jun ; Ye, Hong-Zhou ; Nauta, Klaas ; Van Voorhis, Troy ; Schmidt, Timothy W. ; Field, Robert W.</creator><creatorcontrib>Jiang, Jun ; Ye, Hong-Zhou ; Nauta, Klaas ; Van Voorhis, Troy ; Schmidt, Timothy W. ; Field, Robert W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.2c00495</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters ; ab initio calculations ; ASTRONOMY AND ASTROPHYSICS ; ATOMIC AND MOLECULAR PHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; electronic structure ; energy ; group theory ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; matrix elements</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2022-05, Vol.126 (20), p.3090-3100</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3714-2753 ; 0000-0001-7111-0176 ; 0000-0001-6691-1438 ; 0000-0002-7609-4205 ; 0000-0002-3526-3797 ; 0000000237142753 ; 0000000166911438 ; 0000000171110176 ; 0000000235263797 ; 0000000276094205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.2c00495$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.2c00495$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877979$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Ye, Hong-Zhou</creatorcontrib><creatorcontrib>Nauta, Klaas</creatorcontrib><creatorcontrib>Van Voorhis, Troy</creatorcontrib><creatorcontrib>Schmidt, Timothy W.</creatorcontrib><creatorcontrib>Field, Robert W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><subject>ab initio calculations</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>electronic structure</subject><subject>energy</subject><subject>group theory</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>matrix elements</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAQhi0EEqWwM1pMDKTYjp3EbKgFilQEEoWFwXKcS-sqdUrtDGx9EHi5PgmGdvpPp0-n_z6EzikZUMLotTZ-sFgZPWCGEC7FAepRwUgiGBWHcSaFTESWymN04v2CEEJTxnvoY2R1qYM1-F034Awk47YB_Bp0AI-tw2EOeMjwU9yaroEbvN18v3QhWDfD4265Cl94tItpO4NIr_HtTFu33fycoqNaNx7O9tlHb_d30-E4mTw_PA5vJ4lmjIeEmlSCyEzNeUELHstXJRBRFxXNS8LrDOr4ochknVZAgAouZVVQAcaUnGZV2kcXu7utD1Z5YwOYuWmdAxMULfJc5jJClztotW4_O_BBLa030DTaQdt5xbKMF4RTxiJ6tUOjU7Vou7WL7RUl6k-0-l9G0WovOv0Fn3pzCg</recordid><startdate>20220526</startdate><enddate>20220526</enddate><creator>Jiang, Jun</creator><creator>Ye, Hong-Zhou</creator><creator>Nauta, Klaas</creator><creator>Van Voorhis, Troy</creator><creator>Schmidt, Timothy W.</creator><creator>Field, Robert W.</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3714-2753</orcidid><orcidid>https://orcid.org/0000-0001-7111-0176</orcidid><orcidid>https://orcid.org/0000-0001-6691-1438</orcidid><orcidid>https://orcid.org/0000-0002-7609-4205</orcidid><orcidid>https://orcid.org/0000-0002-3526-3797</orcidid><orcidid>https://orcid.org/0000000237142753</orcidid><orcidid>https://orcid.org/0000000166911438</orcidid><orcidid>https://orcid.org/0000000171110176</orcidid><orcidid>https://orcid.org/0000000235263797</orcidid><orcidid>https://orcid.org/0000000276094205</orcidid></search><sort><creationdate>20220526</creationdate><title>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</title><author>Jiang, Jun ; Ye, Hong-Zhou ; Nauta, Klaas ; Van Voorhis, Troy ; Schmidt, Timothy W. ; Field, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-1c39e56cf448184049dbe05f8d17b04f6ef102569f3de0e15499d815eccb416d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><topic>ab initio calculations</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>electronic structure</topic><topic>energy</topic><topic>group theory</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>matrix elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Ye, Hong-Zhou</creatorcontrib><creatorcontrib>Nauta, Klaas</creatorcontrib><creatorcontrib>Van Voorhis, Troy</creatorcontrib><creatorcontrib>Schmidt, Timothy W.</creatorcontrib><creatorcontrib>Field, Robert W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Jun</au><au>Ye, Hong-Zhou</au><au>Nauta, Klaas</au><au>Van Voorhis, Troy</au><au>Schmidt, Timothy W.</au><au>Field, Robert W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again”</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2022-05-26</date><risdate>2022</risdate><volume>126</volume><issue>20</issue><spage>3090</spage><epage>3100</epage><pages>3090-3100</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σ u + , and 3Σ u + ). The key concept of our model is the existence of two “valence-hole” configurations, 2 σ g 2 2 σ u 1 1 π u 3 3 σ g 2 for 1,3Π g states and 2 σ g 2 2 σ u 1 1 π u 4 3 σ g 1 for 1,3Σ u + states, that are derived from 3σ g ← 2σ u electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.2c00495</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3714-2753</orcidid><orcidid>https://orcid.org/0000-0001-7111-0176</orcidid><orcidid>https://orcid.org/0000-0001-6691-1438</orcidid><orcidid>https://orcid.org/0000-0002-7609-4205</orcidid><orcidid>https://orcid.org/0000-0002-3526-3797</orcidid><orcidid>https://orcid.org/0000000237142753</orcidid><orcidid>https://orcid.org/0000000166911438</orcidid><orcidid>https://orcid.org/0000000171110176</orcidid><orcidid>https://orcid.org/0000000235263797</orcidid><orcidid>https://orcid.org/0000000276094205</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2022-05, Vol.126 (20), p.3090-3100 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_osti_scitechconnect_1877979 |
source | ACS Publications |
subjects | A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters ab initio calculations ASTRONOMY AND ASTROPHYSICS ATOMIC AND MOLECULAR PHYSICS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electronic structure energy group theory INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY matrix elements |
title | Diabatic Valence-Hole States in the C2 Molecule: “Putting Humpty Dumpty Together Again” |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diabatic%20Valence-Hole%20States%20in%20the%20C2%20Molecule:%20%E2%80%9CPutting%20Humpty%20Dumpty%20Together%20Again%E2%80%9D&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Jiang,%20Jun&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-05-26&rft.volume=126&rft.issue=20&rft.spage=3090&rft.epage=3100&rft.pages=3090-3100&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.2c00495&rft_dat=%3Cproquest_osti_%3E2664804122%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2664804122&rft_id=info:pmid/&rfr_iscdi=true |