Intrinsic ferroelectricity in Y-doped HfO2 thin films
Ferroelectric HfO 2 -based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase...
Gespeichert in:
Veröffentlicht in: | Nature materials 2022-08, Vol.21 (8), p.903-909 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 909 |
---|---|
container_issue | 8 |
container_start_page | 903 |
container_title | Nature materials |
container_volume | 21 |
creator | Yun, Yu Buragohain, Pratyush Li, Ming Ahmadi, Zahra Zhang, Yizhi Li, Xin Wang, Haohan Li, Jing Lu, Ping Tao, Lingling Wang, Haiyan Shield, Jeffrey E. Tsymbal, Evgeny Y. Gruverman, Alexei Xu, Xiaoshan |
description | Ferroelectric HfO
2
-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO
2
-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO
2
films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm
–2
has been observed at room temperature in Y-doped HfO
2
(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm
–2
, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the
Pca
2
1
orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO
2
-based materials, optimizing their performance in device applications.
Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO
2
thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic. |
doi_str_mv | 10.1038/s41563-022-01282-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1877162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697205447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwB5giWFgM9tmx4xFVQCtV6gIDk5U4Z5oqdYqdDv33GFIJiYHpTqfvPb17WXbN6D2jvHyIghWSEwpAKIMSiDzJJkwoSYSU9PS4MwZwnl3EuKEUWFHISVYs_BBaH1ubOwyhxw5tOth2OOStz99J0--wyeduBfmwThfXdtt4mZ25qot4dZzT7O356XU2J8vVy2L2uCSWKz2QmlVWULRUY106qkouCo0WlHMN1LQCV3OnJGptlRUNUA011o1uCsUpNA2fZjejbx-H1sSUCu3a9t6nkIaVSjEJCboboV3oP_cYB7Nto8Wuqzz2-2hAlqxkohQsobd_0E2_Dz69kCitgBZCqETBSNnQxxjQmV1ot1U4GEbNd91mrNukus1P3UYmER9FMcH-A8Ov9T-qL-PlgNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697205447</pqid></control><display><type>article</type><title>Intrinsic ferroelectricity in Y-doped HfO2 thin films</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yun, Yu ; Buragohain, Pratyush ; Li, Ming ; Ahmadi, Zahra ; Zhang, Yizhi ; Li, Xin ; Wang, Haohan ; Li, Jing ; Lu, Ping ; Tao, Lingling ; Wang, Haiyan ; Shield, Jeffrey E. ; Tsymbal, Evgeny Y. ; Gruverman, Alexei ; Xu, Xiaoshan</creator><creatorcontrib>Yun, Yu ; Buragohain, Pratyush ; Li, Ming ; Ahmadi, Zahra ; Zhang, Yizhi ; Li, Xin ; Wang, Haohan ; Li, Jing ; Lu, Ping ; Tao, Lingling ; Wang, Haiyan ; Shield, Jeffrey E. ; Tsymbal, Evgeny Y. ; Gruverman, Alexei ; Xu, Xiaoshan ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Ferroelectric HfO
2
-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO
2
-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO
2
films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm
–2
has been observed at room temperature in Y-doped HfO
2
(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm
–2
, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the
Pca
2
1
orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO
2
-based materials, optimizing their performance in device applications.
Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO
2
thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-022-01282-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/119/996 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal defects ; Crystal growth ; Crystal structure ; Crystallinity ; Density functional theory ; Electronic devices ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics and multiferroics ; Grain size ; Hafnium ; Hafnium oxide ; Linear polarization ; MATERIALS SCIENCE ; Nanotechnology ; Optical and Electronic Materials ; Orthorhombic phase ; Particle size ; Polarization ; Room temperature ; Silicon ; Thin films</subject><ispartof>Nature materials, 2022-08, Vol.21 (8), p.903-909</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</citedby><cites>FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</cites><orcidid>0000-0002-7397-1209 ; 0000-0002-9369-7462 ; 0000-0001-6744-3082 ; 0000-0001-6003-100X ; 0000-0002-4363-392X ; 0000-0003-0492-2750 ; 0000-0002-6728-5480 ; 0000000304922750 ; 0000000293697462 ; 000000016003100X ; 0000000267285480 ; 0000000167443082 ; 0000000273971209 ; 000000024363392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-022-01282-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-022-01282-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877162$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Yu</creatorcontrib><creatorcontrib>Buragohain, Pratyush</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ahmadi, Zahra</creatorcontrib><creatorcontrib>Zhang, Yizhi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Haohan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Intrinsic ferroelectricity in Y-doped HfO2 thin films</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Ferroelectric HfO
2
-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO
2
-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO
2
films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm
–2
has been observed at room temperature in Y-doped HfO
2
(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm
–2
, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the
Pca
2
1
orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO
2
-based materials, optimizing their performance in device applications.
Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO
2
thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.</description><subject>639/301/1005/1007</subject><subject>639/301/119/996</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Density functional theory</subject><subject>Electronic devices</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics and multiferroics</subject><subject>Grain size</subject><subject>Hafnium</subject><subject>Hafnium oxide</subject><subject>Linear polarization</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Orthorhombic phase</subject><subject>Particle size</subject><subject>Polarization</subject><subject>Room temperature</subject><subject>Silicon</subject><subject>Thin films</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhSMEEqXwB5giWFgM9tmx4xFVQCtV6gIDk5U4Z5oqdYqdDv33GFIJiYHpTqfvPb17WXbN6D2jvHyIghWSEwpAKIMSiDzJJkwoSYSU9PS4MwZwnl3EuKEUWFHISVYs_BBaH1ubOwyhxw5tOth2OOStz99J0--wyeduBfmwThfXdtt4mZ25qot4dZzT7O356XU2J8vVy2L2uCSWKz2QmlVWULRUY106qkouCo0WlHMN1LQCV3OnJGptlRUNUA011o1uCsUpNA2fZjejbx-H1sSUCu3a9t6nkIaVSjEJCboboV3oP_cYB7Nto8Wuqzz2-2hAlqxkohQsobd_0E2_Dz69kCitgBZCqETBSNnQxxjQmV1ot1U4GEbNd91mrNukus1P3UYmER9FMcH-A8Ov9T-qL-PlgNQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yun, Yu</creator><creator>Buragohain, Pratyush</creator><creator>Li, Ming</creator><creator>Ahmadi, Zahra</creator><creator>Zhang, Yizhi</creator><creator>Li, Xin</creator><creator>Wang, Haohan</creator><creator>Li, Jing</creator><creator>Lu, Ping</creator><creator>Tao, Lingling</creator><creator>Wang, Haiyan</creator><creator>Shield, Jeffrey E.</creator><creator>Tsymbal, Evgeny Y.</creator><creator>Gruverman, Alexei</creator><creator>Xu, Xiaoshan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7397-1209</orcidid><orcidid>https://orcid.org/0000-0002-9369-7462</orcidid><orcidid>https://orcid.org/0000-0001-6744-3082</orcidid><orcidid>https://orcid.org/0000-0001-6003-100X</orcidid><orcidid>https://orcid.org/0000-0002-4363-392X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0002-6728-5480</orcidid><orcidid>https://orcid.org/0000000304922750</orcidid><orcidid>https://orcid.org/0000000293697462</orcidid><orcidid>https://orcid.org/000000016003100X</orcidid><orcidid>https://orcid.org/0000000267285480</orcidid><orcidid>https://orcid.org/0000000167443082</orcidid><orcidid>https://orcid.org/0000000273971209</orcidid><orcidid>https://orcid.org/000000024363392X</orcidid></search><sort><creationdate>20220801</creationdate><title>Intrinsic ferroelectricity in Y-doped HfO2 thin films</title><author>Yun, Yu ; Buragohain, Pratyush ; Li, Ming ; Ahmadi, Zahra ; Zhang, Yizhi ; Li, Xin ; Wang, Haohan ; Li, Jing ; Lu, Ping ; Tao, Lingling ; Wang, Haiyan ; Shield, Jeffrey E. ; Tsymbal, Evgeny Y. ; Gruverman, Alexei ; Xu, Xiaoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1005/1007</topic><topic>639/301/119/996</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Density functional theory</topic><topic>Electronic devices</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics and multiferroics</topic><topic>Grain size</topic><topic>Hafnium</topic><topic>Hafnium oxide</topic><topic>Linear polarization</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Orthorhombic phase</topic><topic>Particle size</topic><topic>Polarization</topic><topic>Room temperature</topic><topic>Silicon</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Yu</creatorcontrib><creatorcontrib>Buragohain, Pratyush</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ahmadi, Zahra</creatorcontrib><creatorcontrib>Zhang, Yizhi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Haohan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Yu</au><au>Buragohain, Pratyush</au><au>Li, Ming</au><au>Ahmadi, Zahra</au><au>Zhang, Yizhi</au><au>Li, Xin</au><au>Wang, Haohan</au><au>Li, Jing</au><au>Lu, Ping</au><au>Tao, Lingling</au><au>Wang, Haiyan</au><au>Shield, Jeffrey E.</au><au>Tsymbal, Evgeny Y.</au><au>Gruverman, Alexei</au><au>Xu, Xiaoshan</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic ferroelectricity in Y-doped HfO2 thin films</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>21</volume><issue>8</issue><spage>903</spage><epage>909</epage><pages>903-909</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Ferroelectric HfO
2
-based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO
2
-based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO
2
films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm
–2
has been observed at room temperature in Y-doped HfO
2
(111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm
–2
, which is in close agreement with density functional theory calculations. The crystal structure of films reveals the
Pca
2
1
orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO
2
-based materials, optimizing their performance in device applications.
Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO
2
thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-022-01282-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7397-1209</orcidid><orcidid>https://orcid.org/0000-0002-9369-7462</orcidid><orcidid>https://orcid.org/0000-0001-6744-3082</orcidid><orcidid>https://orcid.org/0000-0001-6003-100X</orcidid><orcidid>https://orcid.org/0000-0002-4363-392X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0002-6728-5480</orcidid><orcidid>https://orcid.org/0000000304922750</orcidid><orcidid>https://orcid.org/0000000293697462</orcidid><orcidid>https://orcid.org/000000016003100X</orcidid><orcidid>https://orcid.org/0000000267285480</orcidid><orcidid>https://orcid.org/0000000167443082</orcidid><orcidid>https://orcid.org/0000000273971209</orcidid><orcidid>https://orcid.org/000000024363392X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2022-08, Vol.21 (8), p.903-909 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1877162 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/301/1005/1007 639/301/119/996 Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystal defects Crystal growth Crystal structure Crystallinity Density functional theory Electronic devices Ferroelectric materials Ferroelectricity Ferroelectrics and multiferroics Grain size Hafnium Hafnium oxide Linear polarization MATERIALS SCIENCE Nanotechnology Optical and Electronic Materials Orthorhombic phase Particle size Polarization Room temperature Silicon Thin films |
title | Intrinsic ferroelectricity in Y-doped HfO2 thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20ferroelectricity%20in%20Y-doped%20HfO2%20thin%20films&rft.jtitle=Nature%20materials&rft.au=Yun,%20Yu&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-08-01&rft.volume=21&rft.issue=8&rft.spage=903&rft.epage=909&rft.pages=903-909&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-022-01282-6&rft_dat=%3Cproquest_osti_%3E2697205447%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697205447&rft_id=info:pmid/&rfr_iscdi=true |