Intrinsic ferroelectricity in Y-doped HfO2 thin films

Ferroelectric HfO 2 -based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2022-08, Vol.21 (8), p.903-909
Hauptverfasser: Yun, Yu, Buragohain, Pratyush, Li, Ming, Ahmadi, Zahra, Zhang, Yizhi, Li, Xin, Wang, Haohan, Li, Jing, Lu, Ping, Tao, Lingling, Wang, Haiyan, Shield, Jeffrey E., Tsymbal, Evgeny Y., Gruverman, Alexei, Xu, Xiaoshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 909
container_issue 8
container_start_page 903
container_title Nature materials
container_volume 21
creator Yun, Yu
Buragohain, Pratyush
Li, Ming
Ahmadi, Zahra
Zhang, Yizhi
Li, Xin
Wang, Haohan
Li, Jing
Lu, Ping
Tao, Lingling
Wang, Haiyan
Shield, Jeffrey E.
Tsymbal, Evgeny Y.
Gruverman, Alexei
Xu, Xiaoshan
description Ferroelectric HfO 2 -based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO 2 -based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO 2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm –2 has been observed at room temperature in Y-doped HfO 2 (111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm –2 , which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca 2 1 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO 2 -based materials, optimizing their performance in device applications. Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO 2 thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.
doi_str_mv 10.1038/s41563-022-01282-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1877162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697205447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwB5giWFgM9tmx4xFVQCtV6gIDk5U4Z5oqdYqdDv33GFIJiYHpTqfvPb17WXbN6D2jvHyIghWSEwpAKIMSiDzJJkwoSYSU9PS4MwZwnl3EuKEUWFHISVYs_BBaH1ubOwyhxw5tOth2OOStz99J0--wyeduBfmwThfXdtt4mZ25qot4dZzT7O356XU2J8vVy2L2uCSWKz2QmlVWULRUY106qkouCo0WlHMN1LQCV3OnJGptlRUNUA011o1uCsUpNA2fZjejbx-H1sSUCu3a9t6nkIaVSjEJCboboV3oP_cYB7Nto8Wuqzz2-2hAlqxkohQsobd_0E2_Dz69kCitgBZCqETBSNnQxxjQmV1ot1U4GEbNd91mrNukus1P3UYmER9FMcH-A8Ov9T-qL-PlgNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697205447</pqid></control><display><type>article</type><title>Intrinsic ferroelectricity in Y-doped HfO2 thin films</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yun, Yu ; Buragohain, Pratyush ; Li, Ming ; Ahmadi, Zahra ; Zhang, Yizhi ; Li, Xin ; Wang, Haohan ; Li, Jing ; Lu, Ping ; Tao, Lingling ; Wang, Haiyan ; Shield, Jeffrey E. ; Tsymbal, Evgeny Y. ; Gruverman, Alexei ; Xu, Xiaoshan</creator><creatorcontrib>Yun, Yu ; Buragohain, Pratyush ; Li, Ming ; Ahmadi, Zahra ; Zhang, Yizhi ; Li, Xin ; Wang, Haohan ; Li, Jing ; Lu, Ping ; Tao, Lingling ; Wang, Haiyan ; Shield, Jeffrey E. ; Tsymbal, Evgeny Y. ; Gruverman, Alexei ; Xu, Xiaoshan ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Ferroelectric HfO 2 -based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO 2 -based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO 2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm –2 has been observed at room temperature in Y-doped HfO 2 (111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm –2 , which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca 2 1 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO 2 -based materials, optimizing their performance in device applications. Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO 2 thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-022-01282-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/301/119/996 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal defects ; Crystal growth ; Crystal structure ; Crystallinity ; Density functional theory ; Electronic devices ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics and multiferroics ; Grain size ; Hafnium ; Hafnium oxide ; Linear polarization ; MATERIALS SCIENCE ; Nanotechnology ; Optical and Electronic Materials ; Orthorhombic phase ; Particle size ; Polarization ; Room temperature ; Silicon ; Thin films</subject><ispartof>Nature materials, 2022-08, Vol.21 (8), p.903-909</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</citedby><cites>FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</cites><orcidid>0000-0002-7397-1209 ; 0000-0002-9369-7462 ; 0000-0001-6744-3082 ; 0000-0001-6003-100X ; 0000-0002-4363-392X ; 0000-0003-0492-2750 ; 0000-0002-6728-5480 ; 0000000304922750 ; 0000000293697462 ; 000000016003100X ; 0000000267285480 ; 0000000167443082 ; 0000000273971209 ; 000000024363392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-022-01282-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-022-01282-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1877162$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Yu</creatorcontrib><creatorcontrib>Buragohain, Pratyush</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ahmadi, Zahra</creatorcontrib><creatorcontrib>Zhang, Yizhi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Haohan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Intrinsic ferroelectricity in Y-doped HfO2 thin films</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Ferroelectric HfO 2 -based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO 2 -based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO 2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm –2 has been observed at room temperature in Y-doped HfO 2 (111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm –2 , which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca 2 1 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO 2 -based materials, optimizing their performance in device applications. Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO 2 thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.</description><subject>639/301/1005/1007</subject><subject>639/301/119/996</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Density functional theory</subject><subject>Electronic devices</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics and multiferroics</subject><subject>Grain size</subject><subject>Hafnium</subject><subject>Hafnium oxide</subject><subject>Linear polarization</subject><subject>MATERIALS SCIENCE</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Orthorhombic phase</subject><subject>Particle size</subject><subject>Polarization</subject><subject>Room temperature</subject><subject>Silicon</subject><subject>Thin films</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhSMEEqXwB5giWFgM9tmx4xFVQCtV6gIDk5U4Z5oqdYqdDv33GFIJiYHpTqfvPb17WXbN6D2jvHyIghWSEwpAKIMSiDzJJkwoSYSU9PS4MwZwnl3EuKEUWFHISVYs_BBaH1ubOwyhxw5tOth2OOStz99J0--wyeduBfmwThfXdtt4mZ25qot4dZzT7O356XU2J8vVy2L2uCSWKz2QmlVWULRUY106qkouCo0WlHMN1LQCV3OnJGptlRUNUA011o1uCsUpNA2fZjejbx-H1sSUCu3a9t6nkIaVSjEJCboboV3oP_cYB7Nto8Wuqzz2-2hAlqxkohQsobd_0E2_Dz69kCitgBZCqETBSNnQxxjQmV1ot1U4GEbNd91mrNukus1P3UYmER9FMcH-A8Ov9T-qL-PlgNQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yun, Yu</creator><creator>Buragohain, Pratyush</creator><creator>Li, Ming</creator><creator>Ahmadi, Zahra</creator><creator>Zhang, Yizhi</creator><creator>Li, Xin</creator><creator>Wang, Haohan</creator><creator>Li, Jing</creator><creator>Lu, Ping</creator><creator>Tao, Lingling</creator><creator>Wang, Haiyan</creator><creator>Shield, Jeffrey E.</creator><creator>Tsymbal, Evgeny Y.</creator><creator>Gruverman, Alexei</creator><creator>Xu, Xiaoshan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7397-1209</orcidid><orcidid>https://orcid.org/0000-0002-9369-7462</orcidid><orcidid>https://orcid.org/0000-0001-6744-3082</orcidid><orcidid>https://orcid.org/0000-0001-6003-100X</orcidid><orcidid>https://orcid.org/0000-0002-4363-392X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0002-6728-5480</orcidid><orcidid>https://orcid.org/0000000304922750</orcidid><orcidid>https://orcid.org/0000000293697462</orcidid><orcidid>https://orcid.org/000000016003100X</orcidid><orcidid>https://orcid.org/0000000267285480</orcidid><orcidid>https://orcid.org/0000000167443082</orcidid><orcidid>https://orcid.org/0000000273971209</orcidid><orcidid>https://orcid.org/000000024363392X</orcidid></search><sort><creationdate>20220801</creationdate><title>Intrinsic ferroelectricity in Y-doped HfO2 thin films</title><author>Yun, Yu ; Buragohain, Pratyush ; Li, Ming ; Ahmadi, Zahra ; Zhang, Yizhi ; Li, Xin ; Wang, Haohan ; Li, Jing ; Lu, Ping ; Tao, Lingling ; Wang, Haiyan ; Shield, Jeffrey E. ; Tsymbal, Evgeny Y. ; Gruverman, Alexei ; Xu, Xiaoshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b1ac40ec09eb8f0783459ec27ffd2b0a2fb3f76e99c7c4d2092bebd9d57302dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/1005/1007</topic><topic>639/301/119/996</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Density functional theory</topic><topic>Electronic devices</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics and multiferroics</topic><topic>Grain size</topic><topic>Hafnium</topic><topic>Hafnium oxide</topic><topic>Linear polarization</topic><topic>MATERIALS SCIENCE</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Orthorhombic phase</topic><topic>Particle size</topic><topic>Polarization</topic><topic>Room temperature</topic><topic>Silicon</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Yu</creatorcontrib><creatorcontrib>Buragohain, Pratyush</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ahmadi, Zahra</creatorcontrib><creatorcontrib>Zhang, Yizhi</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Haohan</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Tao, Lingling</creatorcontrib><creatorcontrib>Wang, Haiyan</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Tsymbal, Evgeny Y.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Yu</au><au>Buragohain, Pratyush</au><au>Li, Ming</au><au>Ahmadi, Zahra</au><au>Zhang, Yizhi</au><au>Li, Xin</au><au>Wang, Haohan</au><au>Li, Jing</au><au>Lu, Ping</au><au>Tao, Lingling</au><au>Wang, Haiyan</au><au>Shield, Jeffrey E.</au><au>Tsymbal, Evgeny Y.</au><au>Gruverman, Alexei</au><au>Xu, Xiaoshan</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic ferroelectricity in Y-doped HfO2 thin films</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>21</volume><issue>8</issue><spage>903</spage><epage>909</epage><pages>903-909</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Ferroelectric HfO 2 -based materials hold great potential for the widespread integration of ferroelectricity into modern electronics due to their compatibility with existing Si technology. Earlier work indicated that a nanometre grain size was crucial for the stabilization of the ferroelectric phase. This constraint, associated with a high density of structural defects, obscures an insight into the intrinsic ferroelectricity of HfO 2 -based materials. Here we demonstrate that stable and enhanced polarization can be achieved in epitaxial HfO 2 films with a high degree of structural order (crystallinity). An out-of-plane polarization value of 50 μC cm –2 has been observed at room temperature in Y-doped HfO 2 (111) epitaxial thin films, with an estimated full value of intrinsic polarization of 64 μC cm –2 , which is in close agreement with density functional theory calculations. The crystal structure of films reveals the Pca 2 1 orthorhombic phase with small rhombohedral distortion, underlining the role of the structural constraint in stabilizing the ferroelectric phase. Our results suggest that it could be possible to exploit the intrinsic ferroelectricity of HfO 2 -based materials, optimizing their performance in device applications. Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO 2 thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-022-01282-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7397-1209</orcidid><orcidid>https://orcid.org/0000-0002-9369-7462</orcidid><orcidid>https://orcid.org/0000-0001-6744-3082</orcidid><orcidid>https://orcid.org/0000-0001-6003-100X</orcidid><orcidid>https://orcid.org/0000-0002-4363-392X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0002-6728-5480</orcidid><orcidid>https://orcid.org/0000000304922750</orcidid><orcidid>https://orcid.org/0000000293697462</orcidid><orcidid>https://orcid.org/000000016003100X</orcidid><orcidid>https://orcid.org/0000000267285480</orcidid><orcidid>https://orcid.org/0000000167443082</orcidid><orcidid>https://orcid.org/0000000273971209</orcidid><orcidid>https://orcid.org/000000024363392X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2022-08, Vol.21 (8), p.903-909
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1877162
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/1005/1007
639/301/119/996
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Crystal defects
Crystal growth
Crystal structure
Crystallinity
Density functional theory
Electronic devices
Ferroelectric materials
Ferroelectricity
Ferroelectrics and multiferroics
Grain size
Hafnium
Hafnium oxide
Linear polarization
MATERIALS SCIENCE
Nanotechnology
Optical and Electronic Materials
Orthorhombic phase
Particle size
Polarization
Room temperature
Silicon
Thin films
title Intrinsic ferroelectricity in Y-doped HfO2 thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20ferroelectricity%20in%20Y-doped%20HfO2%20thin%20films&rft.jtitle=Nature%20materials&rft.au=Yun,%20Yu&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2022-08-01&rft.volume=21&rft.issue=8&rft.spage=903&rft.epage=909&rft.pages=903-909&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-022-01282-6&rft_dat=%3Cproquest_osti_%3E2697205447%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697205447&rft_id=info:pmid/&rfr_iscdi=true