Effects of chemical bonding on heat transport across interfaces

Understanding how heat is transferred across interfaces is important for the efficiency of micro- and nanoscale electronic devices. Here, it is shown that there is a direct link between the bonding character of an interface and the thermal transport across it. Interfaces often dictate heat flow in m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2012-04, Vol.11 (6), p.502-506
Hauptverfasser: Losego, Mark D., Grady, Martha E., Sottos, Nancy R., Cahill, David G., Braun, Paul V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 6
container_start_page 502
container_title Nature materials
container_volume 11
creator Losego, Mark D.
Grady, Martha E.
Sottos, Nancy R.
Cahill, David G.
Braun, Paul V.
description Understanding how heat is transferred across interfaces is important for the efficiency of micro- and nanoscale electronic devices. Here, it is shown that there is a direct link between the bonding character of an interface and the thermal transport across it. Interfaces often dictate heat flow in micro- and nanostructured systems 1 , 2 , 3 . However, despite the growing importance of thermal management in micro- and nanoscale devices 4 , 5 , 6 , a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump–probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold–SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.
doi_str_mv 10.1038/nmat3303
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1875140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017760122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-5ce68a672f41be8e3987b0e6694b00535dfb3510dad95e14e82a16530232b4f53</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgit_gL5BFL3qoZpJNdvckUuoHFLzoeclmJ-2WblKT9OC_N7WtiichkEAe3klmCDkDegOUl7e2V5FzynfIIeSFHORS0t3NGYCxA3IUwoxSBkLIfXLAmEir4ofkbmQM6hgyZzI9xb7Tap41zradnWTOZlNUMYte2bBwPmZKexdC1tmI3iiN4YTsGTUPeLrZj8nbw-h1-DQYvzw-D-_HA50XEAdCoyyVLJjJocESeVUWDUUpq7yhVHDRmoYLoK1qK4GQY8kUSMEp46zJjeDH5GKd60Ls6qC7iHqqnbXp8TWUhYCcJnS1Rgvv3pcYYt13QeN8riy6ZahTr4ADkxX7B4WikDT1LtHLP3Tmlt6m365UBRVN5X8Cvzrk0dQL3_XKfyS0KlzW2yEler4JXDY9tt9wO5UErtcgpCs7Qf-74p-wT0srl2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019190875</pqid></control><display><type>article</type><title>Effects of chemical bonding on heat transport across interfaces</title><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Losego, Mark D. ; Grady, Martha E. ; Sottos, Nancy R. ; Cahill, David G. ; Braun, Paul V.</creator><creatorcontrib>Losego, Mark D. ; Grady, Martha E. ; Sottos, Nancy R. ; Cahill, David G. ; Braun, Paul V. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Understanding how heat is transferred across interfaces is important for the efficiency of micro- and nanoscale electronic devices. Here, it is shown that there is a direct link between the bonding character of an interface and the thermal transport across it. Interfaces often dictate heat flow in micro- and nanostructured systems 1 , 2 , 3 . However, despite the growing importance of thermal management in micro- and nanoscale devices 4 , 5 , 6 , a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump–probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold–SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3303</identifier><identifier>PMID: 22522593</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/301/357 ; Acoustics ; Biomaterials ; Bonding ; Chemical bonds ; Chemistry and Materials Science ; Condensed Matter Physics ; Cooling ; Covalent bonds ; Density ; Gold ; Heat flow ; Heat transfer ; Heat transmission ; Heat transport ; letter ; MATERIALS SCIENCE ; Nanoscale materials ; Nanostructure ; Nanostructured materials ; Nanotechnology ; Optical and Electronic Materials ; Surfaces, interfaces and thin films ; Thermal conductivity ; Transport</subject><ispartof>Nature materials, 2012-04, Vol.11 (6), p.502-506</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Jun 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-5ce68a672f41be8e3987b0e6694b00535dfb3510dad95e14e82a16530232b4f53</citedby><cites>FETCH-LOGICAL-c471t-5ce68a672f41be8e3987b0e6694b00535dfb3510dad95e14e82a16530232b4f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3303$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3303$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22522593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1875140$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Losego, Mark D.</creatorcontrib><creatorcontrib>Grady, Martha E.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>Cahill, David G.</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Effects of chemical bonding on heat transport across interfaces</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Understanding how heat is transferred across interfaces is important for the efficiency of micro- and nanoscale electronic devices. Here, it is shown that there is a direct link between the bonding character of an interface and the thermal transport across it. Interfaces often dictate heat flow in micro- and nanostructured systems 1 , 2 , 3 . However, despite the growing importance of thermal management in micro- and nanoscale devices 4 , 5 , 6 , a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump–probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold–SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.</description><subject>639/301/119/544</subject><subject>639/301/357</subject><subject>Acoustics</subject><subject>Biomaterials</subject><subject>Bonding</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cooling</subject><subject>Covalent bonds</subject><subject>Density</subject><subject>Gold</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Heat transport</subject><subject>letter</subject><subject>MATERIALS SCIENCE</subject><subject>Nanoscale materials</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Surfaces, interfaces and thin films</subject><subject>Thermal conductivity</subject><subject>Transport</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0U1LAzEQBuAgit_gL5BFL3qoZpJNdvckUuoHFLzoeclmJ-2WblKT9OC_N7WtiichkEAe3klmCDkDegOUl7e2V5FzynfIIeSFHORS0t3NGYCxA3IUwoxSBkLIfXLAmEir4ofkbmQM6hgyZzI9xb7Tap41zradnWTOZlNUMYte2bBwPmZKexdC1tmI3iiN4YTsGTUPeLrZj8nbw-h1-DQYvzw-D-_HA50XEAdCoyyVLJjJocESeVUWDUUpq7yhVHDRmoYLoK1qK4GQY8kUSMEp46zJjeDH5GKd60Ls6qC7iHqqnbXp8TWUhYCcJnS1Rgvv3pcYYt13QeN8riy6ZahTr4ADkxX7B4WikDT1LtHLP3Tmlt6m365UBRVN5X8Cvzrk0dQL3_XKfyS0KlzW2yEler4JXDY9tt9wO5UErtcgpCs7Qf-74p-wT0srl2U</recordid><startdate>20120422</startdate><enddate>20120422</enddate><creator>Losego, Mark D.</creator><creator>Grady, Martha E.</creator><creator>Sottos, Nancy R.</creator><creator>Cahill, David G.</creator><creator>Braun, Paul V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120422</creationdate><title>Effects of chemical bonding on heat transport across interfaces</title><author>Losego, Mark D. ; Grady, Martha E. ; Sottos, Nancy R. ; Cahill, David G. ; Braun, Paul V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-5ce68a672f41be8e3987b0e6694b00535dfb3510dad95e14e82a16530232b4f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/544</topic><topic>639/301/357</topic><topic>Acoustics</topic><topic>Biomaterials</topic><topic>Bonding</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cooling</topic><topic>Covalent bonds</topic><topic>Density</topic><topic>Gold</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Heat transport</topic><topic>letter</topic><topic>MATERIALS SCIENCE</topic><topic>Nanoscale materials</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Surfaces, interfaces and thin films</topic><topic>Thermal conductivity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Losego, Mark D.</creatorcontrib><creatorcontrib>Grady, Martha E.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>Cahill, David G.</creatorcontrib><creatorcontrib>Braun, Paul V.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Losego, Mark D.</au><au>Grady, Martha E.</au><au>Sottos, Nancy R.</au><au>Cahill, David G.</au><au>Braun, Paul V.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of chemical bonding on heat transport across interfaces</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-04-22</date><risdate>2012</risdate><volume>11</volume><issue>6</issue><spage>502</spage><epage>506</epage><pages>502-506</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Understanding how heat is transferred across interfaces is important for the efficiency of micro- and nanoscale electronic devices. Here, it is shown that there is a direct link between the bonding character of an interface and the thermal transport across it. Interfaces often dictate heat flow in micro- and nanostructured systems 1 , 2 , 3 . However, despite the growing importance of thermal management in micro- and nanoscale devices 4 , 5 , 6 , a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump–probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold–SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22522593</pmid><doi>10.1038/nmat3303</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2012-04, Vol.11 (6), p.502-506
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1875140
source Nature; SpringerNature Complete Journals
subjects 639/301/119/544
639/301/357
Acoustics
Biomaterials
Bonding
Chemical bonds
Chemistry and Materials Science
Condensed Matter Physics
Cooling
Covalent bonds
Density
Gold
Heat flow
Heat transfer
Heat transmission
Heat transport
letter
MATERIALS SCIENCE
Nanoscale materials
Nanostructure
Nanostructured materials
Nanotechnology
Optical and Electronic Materials
Surfaces, interfaces and thin films
Thermal conductivity
Transport
title Effects of chemical bonding on heat transport across interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A51%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20chemical%20bonding%20on%20heat%20transport%20across%20interfaces&rft.jtitle=Nature%20materials&rft.au=Losego,%20Mark%20D.&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2012-04-22&rft.volume=11&rft.issue=6&rft.spage=502&rft.epage=506&rft.pages=502-506&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3303&rft_dat=%3Cproquest_osti_%3E1017760122%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019190875&rft_id=info:pmid/22522593&rfr_iscdi=true