Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations

This paper documents first work toward validation of BOUT++ nonlinear edge localized mode (ELM) simulations in X-point geometry, at experimental pedestal collisionality, against multiple diagnostic measurements of a well-characterized ELM event in DIII-D. The key to the BOUT++ simulations is the use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2013-07, Vol.438 (Supplement), p.S346-S350
Hauptverfasser: Fenstermacher, M.E., Xu, X.Q., Joseph, I., Lanctot, M.J., Lasnier, C.J., Meyer, W.H., Tobias, B., Zeng, L., Leonard, A.W., Osborne, T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S350
container_issue Supplement
container_start_page S346
container_title Journal of nuclear materials
container_volume 438
creator Fenstermacher, M.E.
Xu, X.Q.
Joseph, I.
Lanctot, M.J.
Lasnier, C.J.
Meyer, W.H.
Tobias, B.
Zeng, L.
Leonard, A.W.
Osborne, T.H.
description This paper documents first work toward validation of BOUT++ nonlinear edge localized mode (ELM) simulations in X-point geometry, at experimental pedestal collisionality, against multiple diagnostic measurements of a well-characterized ELM event in DIII-D. The key to the BOUT++ simulations is the use of a hyper-resistivity model that effectively spreads the very thin current sheets that form in low collisionality nonlinear simulations, and allows for ELM driven magnetic reconnection at finite current density. Experimental ELM characterization includes multiple fast line-integrated diagnostic measurements revealing in–out divertor asymmetric response to ELMs, IRTV imaging at the divertor targets, visible emission in the divertor volume to test the extension of BOUT++ to X-point geometry, and forward modeling of new electron cyclotron emission imaging to test predictions of ELM filaments in the edge pedestal. Initial comparisons suggest optimized BOUT boundary conditions and model parameters, and show similarities between initial BOUT++ results and several measurements.
doi_str_mv 10.1016/j.jnucmat.2013.01.065
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1874872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311513000731</els_id><sourcerecordid>1531038882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3315-2ec714c45547527c4748b4cebc2eb10017c0a57e93c6b93f0b48c3d33cafb2a23</originalsourceid><addsrcrecordid>eNqFkE1r3DAURUVpodO0P6Eguiokdp4ka-xZlTYfzcCEWSRZC_n5mWqwpakkD_Tfx2ay7-ptzrvcexj7KqAUINbXh_LgJxxtLiUIVYIoYa3fsZVoalVUjYT3bAUgZaGE0B_Zp5QOAKA3oFeM7m3K_EgdpWyHK_6033HrO965E8UcIh_JpinSSD4n3scw8tvtdlvc8hz4yQ6us5n4r_3L8-Ul98EPzpON_G73yJMbp8FmF3z6zD70dkj05e1esJf7u-ebh2K3_729-bkrUCmhC0lYiworratayxqrumraCqlFSa0AEDWC1TVtFK7bjeqhrRpUnVJo-1ZaqS7Yt3NuSNmZhC4T_sHgPWE2s46qqRfo-xk6xvB3mneb0SWkYbCewpSM0EqAappmQfUZxRhSitSbY3Sjjf-MALO4Nwfz5t4s7g0IM7uf_36c_2gee3IUly7kkToXlypdcP9JeAVoJo5I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531038882</pqid></control><display><type>article</type><title>Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fenstermacher, M.E. ; Xu, X.Q. ; Joseph, I. ; Lanctot, M.J. ; Lasnier, C.J. ; Meyer, W.H. ; Tobias, B. ; Zeng, L. ; Leonard, A.W. ; Osborne, T.H.</creator><creatorcontrib>Fenstermacher, M.E. ; Xu, X.Q. ; Joseph, I. ; Lanctot, M.J. ; Lasnier, C.J. ; Meyer, W.H. ; Tobias, B. ; Zeng, L. ; Leonard, A.W. ; Osborne, T.H. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>This paper documents first work toward validation of BOUT++ nonlinear edge localized mode (ELM) simulations in X-point geometry, at experimental pedestal collisionality, against multiple diagnostic measurements of a well-characterized ELM event in DIII-D. The key to the BOUT++ simulations is the use of a hyper-resistivity model that effectively spreads the very thin current sheets that form in low collisionality nonlinear simulations, and allows for ELM driven magnetic reconnection at finite current density. Experimental ELM characterization includes multiple fast line-integrated diagnostic measurements revealing in–out divertor asymmetric response to ELMs, IRTV imaging at the divertor targets, visible emission in the divertor volume to test the extension of BOUT++ to X-point geometry, and forward modeling of new electron cyclotron emission imaging to test predictions of ELM filaments in the edge pedestal. Initial comparisons suggest optimized BOUT boundary conditions and model parameters, and show similarities between initial BOUT++ results and several measurements.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2013.01.065</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Asymmetry ; Computer simulation ; Diagnostic systems ; Elm ; Emission analysis ; Imaging ; Mathematical models ; Nonlinearity</subject><ispartof>Journal of nuclear materials, 2013-07, Vol.438 (Supplement), p.S346-S350</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3315-2ec714c45547527c4748b4cebc2eb10017c0a57e93c6b93f0b48c3d33cafb2a23</citedby><cites>FETCH-LOGICAL-c3315-2ec714c45547527c4748b4cebc2eb10017c0a57e93c6b93f0b48c3d33cafb2a23</cites><orcidid>0000000318389790 ; 0000000271092278 ; 0000000273963372 ; 0000000255400840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2013.01.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1874872$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fenstermacher, M.E.</creatorcontrib><creatorcontrib>Xu, X.Q.</creatorcontrib><creatorcontrib>Joseph, I.</creatorcontrib><creatorcontrib>Lanctot, M.J.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Meyer, W.H.</creatorcontrib><creatorcontrib>Tobias, B.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Leonard, A.W.</creatorcontrib><creatorcontrib>Osborne, T.H.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations</title><title>Journal of nuclear materials</title><description>This paper documents first work toward validation of BOUT++ nonlinear edge localized mode (ELM) simulations in X-point geometry, at experimental pedestal collisionality, against multiple diagnostic measurements of a well-characterized ELM event in DIII-D. The key to the BOUT++ simulations is the use of a hyper-resistivity model that effectively spreads the very thin current sheets that form in low collisionality nonlinear simulations, and allows for ELM driven magnetic reconnection at finite current density. Experimental ELM characterization includes multiple fast line-integrated diagnostic measurements revealing in–out divertor asymmetric response to ELMs, IRTV imaging at the divertor targets, visible emission in the divertor volume to test the extension of BOUT++ to X-point geometry, and forward modeling of new electron cyclotron emission imaging to test predictions of ELM filaments in the edge pedestal. Initial comparisons suggest optimized BOUT boundary conditions and model parameters, and show similarities between initial BOUT++ results and several measurements.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Asymmetry</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Elm</subject><subject>Emission analysis</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAURUVpodO0P6Eguiokdp4ka-xZlTYfzcCEWSRZC_n5mWqwpakkD_Tfx2ay7-ptzrvcexj7KqAUINbXh_LgJxxtLiUIVYIoYa3fsZVoalVUjYT3bAUgZaGE0B_Zp5QOAKA3oFeM7m3K_EgdpWyHK_6033HrO965E8UcIh_JpinSSD4n3scw8tvtdlvc8hz4yQ6us5n4r_3L8-Ul98EPzpON_G73yJMbp8FmF3z6zD70dkj05e1esJf7u-ebh2K3_729-bkrUCmhC0lYiworratayxqrumraCqlFSa0AEDWC1TVtFK7bjeqhrRpUnVJo-1ZaqS7Yt3NuSNmZhC4T_sHgPWE2s46qqRfo-xk6xvB3mneb0SWkYbCewpSM0EqAappmQfUZxRhSitSbY3Sjjf-MALO4Nwfz5t4s7g0IM7uf_36c_2gee3IUly7kkToXlypdcP9JeAVoJo5I</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Fenstermacher, M.E.</creator><creator>Xu, X.Q.</creator><creator>Joseph, I.</creator><creator>Lanctot, M.J.</creator><creator>Lasnier, C.J.</creator><creator>Meyer, W.H.</creator><creator>Tobias, B.</creator><creator>Zeng, L.</creator><creator>Leonard, A.W.</creator><creator>Osborne, T.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000318389790</orcidid><orcidid>https://orcid.org/0000000271092278</orcidid><orcidid>https://orcid.org/0000000273963372</orcidid><orcidid>https://orcid.org/0000000255400840</orcidid></search><sort><creationdate>20130701</creationdate><title>Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations</title><author>Fenstermacher, M.E. ; Xu, X.Q. ; Joseph, I. ; Lanctot, M.J. ; Lasnier, C.J. ; Meyer, W.H. ; Tobias, B. ; Zeng, L. ; Leonard, A.W. ; Osborne, T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3315-2ec714c45547527c4748b4cebc2eb10017c0a57e93c6b93f0b48c3d33cafb2a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Asymmetry</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Elm</topic><topic>Emission analysis</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenstermacher, M.E.</creatorcontrib><creatorcontrib>Xu, X.Q.</creatorcontrib><creatorcontrib>Joseph, I.</creatorcontrib><creatorcontrib>Lanctot, M.J.</creatorcontrib><creatorcontrib>Lasnier, C.J.</creatorcontrib><creatorcontrib>Meyer, W.H.</creatorcontrib><creatorcontrib>Tobias, B.</creatorcontrib><creatorcontrib>Zeng, L.</creatorcontrib><creatorcontrib>Leonard, A.W.</creatorcontrib><creatorcontrib>Osborne, T.H.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenstermacher, M.E.</au><au>Xu, X.Q.</au><au>Joseph, I.</au><au>Lanctot, M.J.</au><au>Lasnier, C.J.</au><au>Meyer, W.H.</au><au>Tobias, B.</au><au>Zeng, L.</au><au>Leonard, A.W.</au><au>Osborne, T.H.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations</atitle><jtitle>Journal of nuclear materials</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>438</volume><issue>Supplement</issue><spage>S346</spage><epage>S350</epage><pages>S346-S350</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>This paper documents first work toward validation of BOUT++ nonlinear edge localized mode (ELM) simulations in X-point geometry, at experimental pedestal collisionality, against multiple diagnostic measurements of a well-characterized ELM event in DIII-D. The key to the BOUT++ simulations is the use of a hyper-resistivity model that effectively spreads the very thin current sheets that form in low collisionality nonlinear simulations, and allows for ELM driven magnetic reconnection at finite current density. Experimental ELM characterization includes multiple fast line-integrated diagnostic measurements revealing in–out divertor asymmetric response to ELMs, IRTV imaging at the divertor targets, visible emission in the divertor volume to test the extension of BOUT++ to X-point geometry, and forward modeling of new electron cyclotron emission imaging to test predictions of ELM filaments in the edge pedestal. Initial comparisons suggest optimized BOUT boundary conditions and model parameters, and show similarities between initial BOUT++ results and several measurements.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2013.01.065</doi><orcidid>https://orcid.org/0000000318389790</orcidid><orcidid>https://orcid.org/0000000271092278</orcidid><orcidid>https://orcid.org/0000000273963372</orcidid><orcidid>https://orcid.org/0000000255400840</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2013-07, Vol.438 (Supplement), p.S346-S350
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1874872
source ScienceDirect Journals (5 years ago - present)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Asymmetry
Computer simulation
Diagnostic systems
Elm
Emission analysis
Imaging
Mathematical models
Nonlinearity
title Fast pedestal, SOL and divertor measurements from DIII-D to validate BOUT++ nonlinear ELM simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20pedestal,%20SOL%20and%20divertor%20measurements%20from%20DIII-D%20to%20validate%20BOUT++%20nonlinear%20ELM%20simulations&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Fenstermacher,%20M.E.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2013-07-01&rft.volume=438&rft.issue=Supplement&rft.spage=S346&rft.epage=S350&rft.pages=S346-S350&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2013.01.065&rft_dat=%3Cproquest_osti_%3E1531038882%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531038882&rft_id=info:pmid/&rft_els_id=S0022311513000731&rfr_iscdi=true