Effects of magnetic and non-magnetic doping on the vortex lattice in MgB2

Small-angle neutron scattering has been used to study the vortex lattice in superconducting MgB2 doped with either manganese or carbon to achieve a similar suppression of the critical tem­per­ature. Measurements were performed with the magnetic field applied along the c axis, where the vortex lattic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2022-06, Vol.55 (4)
Hauptverfasser: Louden, Elizabeth R., Manni, Soham, Van Zandt, Judah E., Leishman, Alan W. D., Taufour, Valentin, Bud'ko, Sergey L., Debeer-Schmitt, Lisa M., Honecker, Dirk, Dewhurst, Charles D., Canfield, Paul C., Eskildsen, Morten R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of applied crystallography
container_volume 55
creator Louden, Elizabeth R.
Manni, Soham
Van Zandt, Judah E.
Leishman, Alan W. D.
Taufour, Valentin
Bud'ko, Sergey L.
Debeer-Schmitt, Lisa M.
Honecker, Dirk
Dewhurst, Charles D.
Canfield, Paul C.
Eskildsen, Morten R.
description Small-angle neutron scattering has been used to study the vortex lattice in superconducting MgB2 doped with either manganese or carbon to achieve a similar suppression of the critical tem­per­ature. Measurements were performed with the magnetic field applied along the c axis, where the vortex lattice in pure MgB2 is known to undergo a field- and tem­per­ature-driven 30° rotation transition. For Mn doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB2, indicating only a modest effect on the vortex–vortex interaction. In contrast, the vortex lattice rotation transition is completely suppressed in the C-doped case, probably due to a change in the electronic structure which affects the two-band/two-gap nature of superconductivity in MgB2. The vortex lattice longitudinal correlation length shows the opposite behavior, remaining roughly unchanged between pure and C-doped MgB2 while it is significantly reduced in the Mn-doped case. However, the extensive vortex lattice metastability and related activated behavior, observed in conjunction with the vortex lattice transition in pure MgB2, are also seen in the Mn-doped sample. This shows that the vortex lattice disordering is not associated with a substantially increased vortex pinning.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1872849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1872849</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_18728493</originalsourceid><addsrcrecordid>eNqNjU0LwjAQRIMoWD_-w-K9kKba1KtS0YM37yWkmzZSd8UE8efbg4hHTzO8eTAjkWSFlOlGF3r806diFsJVyqzQSiXiVDmHNgZgBzfTEkZvwVADxJR-QcN3Ty0wQewQnvyI-ILexGFD8ATndqcWYuJMH3D5yblYHarL_phyiL4O1ke0nWWi4a7OSq3K9Tb_S3oDr-I8zg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of magnetic and non-magnetic doping on the vortex lattice in MgB2</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Alma/SFX Local Collection</source><creator>Louden, Elizabeth R. ; Manni, Soham ; Van Zandt, Judah E. ; Leishman, Alan W. D. ; Taufour, Valentin ; Bud'ko, Sergey L. ; Debeer-Schmitt, Lisa M. ; Honecker, Dirk ; Dewhurst, Charles D. ; Canfield, Paul C. ; Eskildsen, Morten R.</creator><creatorcontrib>Louden, Elizabeth R. ; Manni, Soham ; Van Zandt, Judah E. ; Leishman, Alan W. D. ; Taufour, Valentin ; Bud'ko, Sergey L. ; Debeer-Schmitt, Lisa M. ; Honecker, Dirk ; Dewhurst, Charles D. ; Canfield, Paul C. ; Eskildsen, Morten R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Small-angle neutron scattering has been used to study the vortex lattice in superconducting MgB2 doped with either manganese or carbon to achieve a similar suppression of the critical tem­per­ature. Measurements were performed with the magnetic field applied along the c axis, where the vortex lattice in pure MgB2 is known to undergo a field- and tem­per­ature-driven 30° rotation transition. For Mn doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB2, indicating only a modest effect on the vortex–vortex interaction. In contrast, the vortex lattice rotation transition is completely suppressed in the C-doped case, probably due to a change in the electronic structure which affects the two-band/two-gap nature of superconductivity in MgB2. The vortex lattice longitudinal correlation length shows the opposite behavior, remaining roughly unchanged between pure and C-doped MgB2 while it is significantly reduced in the Mn-doped case. However, the extensive vortex lattice metastability and related activated behavior, observed in conjunction with the vortex lattice transition in pure MgB2, are also seen in the Mn-doped sample. This shows that the vortex lattice disordering is not associated with a substantially increased vortex pinning.</description><identifier>ISSN: 1600-5767</identifier><identifier>EISSN: 1600-5767</identifier><language>eng</language><publisher>United States: International Union of Crystallography</publisher><subject>doping ; MATERIALS SCIENCE ; MgB2 ; small-angle neutron scattering ; structural transition ; vortex lattices</subject><ispartof>Journal of applied crystallography, 2022-06, Vol.55 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000196793444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1872849$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Louden, Elizabeth R.</creatorcontrib><creatorcontrib>Manni, Soham</creatorcontrib><creatorcontrib>Van Zandt, Judah E.</creatorcontrib><creatorcontrib>Leishman, Alan W. D.</creatorcontrib><creatorcontrib>Taufour, Valentin</creatorcontrib><creatorcontrib>Bud'ko, Sergey L.</creatorcontrib><creatorcontrib>Debeer-Schmitt, Lisa M.</creatorcontrib><creatorcontrib>Honecker, Dirk</creatorcontrib><creatorcontrib>Dewhurst, Charles D.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Eskildsen, Morten R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Effects of magnetic and non-magnetic doping on the vortex lattice in MgB2</title><title>Journal of applied crystallography</title><description>Small-angle neutron scattering has been used to study the vortex lattice in superconducting MgB2 doped with either manganese or carbon to achieve a similar suppression of the critical tem­per­ature. Measurements were performed with the magnetic field applied along the c axis, where the vortex lattice in pure MgB2 is known to undergo a field- and tem­per­ature-driven 30° rotation transition. For Mn doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB2, indicating only a modest effect on the vortex–vortex interaction. In contrast, the vortex lattice rotation transition is completely suppressed in the C-doped case, probably due to a change in the electronic structure which affects the two-band/two-gap nature of superconductivity in MgB2. The vortex lattice longitudinal correlation length shows the opposite behavior, remaining roughly unchanged between pure and C-doped MgB2 while it is significantly reduced in the Mn-doped case. However, the extensive vortex lattice metastability and related activated behavior, observed in conjunction with the vortex lattice transition in pure MgB2, are also seen in the Mn-doped sample. This shows that the vortex lattice disordering is not associated with a substantially increased vortex pinning.</description><subject>doping</subject><subject>MATERIALS SCIENCE</subject><subject>MgB2</subject><subject>small-angle neutron scattering</subject><subject>structural transition</subject><subject>vortex lattices</subject><issn>1600-5767</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjU0LwjAQRIMoWD_-w-K9kKba1KtS0YM37yWkmzZSd8UE8efbg4hHTzO8eTAjkWSFlOlGF3r806diFsJVyqzQSiXiVDmHNgZgBzfTEkZvwVADxJR-QcN3Ty0wQewQnvyI-ILexGFD8ATndqcWYuJMH3D5yblYHarL_phyiL4O1ke0nWWi4a7OSq3K9Tb_S3oDr-I8zg</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Louden, Elizabeth R.</creator><creator>Manni, Soham</creator><creator>Van Zandt, Judah E.</creator><creator>Leishman, Alan W. D.</creator><creator>Taufour, Valentin</creator><creator>Bud'ko, Sergey L.</creator><creator>Debeer-Schmitt, Lisa M.</creator><creator>Honecker, Dirk</creator><creator>Dewhurst, Charles D.</creator><creator>Canfield, Paul C.</creator><creator>Eskildsen, Morten R.</creator><general>International Union of Crystallography</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000196793444</orcidid></search><sort><creationdate>20220615</creationdate><title>Effects of magnetic and non-magnetic doping on the vortex lattice in MgB2</title><author>Louden, Elizabeth R. ; Manni, Soham ; Van Zandt, Judah E. ; Leishman, Alan W. D. ; Taufour, Valentin ; Bud'ko, Sergey L. ; Debeer-Schmitt, Lisa M. ; Honecker, Dirk ; Dewhurst, Charles D. ; Canfield, Paul C. ; Eskildsen, Morten R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_18728493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>doping</topic><topic>MATERIALS SCIENCE</topic><topic>MgB2</topic><topic>small-angle neutron scattering</topic><topic>structural transition</topic><topic>vortex lattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louden, Elizabeth R.</creatorcontrib><creatorcontrib>Manni, Soham</creatorcontrib><creatorcontrib>Van Zandt, Judah E.</creatorcontrib><creatorcontrib>Leishman, Alan W. D.</creatorcontrib><creatorcontrib>Taufour, Valentin</creatorcontrib><creatorcontrib>Bud'ko, Sergey L.</creatorcontrib><creatorcontrib>Debeer-Schmitt, Lisa M.</creatorcontrib><creatorcontrib>Honecker, Dirk</creatorcontrib><creatorcontrib>Dewhurst, Charles D.</creatorcontrib><creatorcontrib>Canfield, Paul C.</creatorcontrib><creatorcontrib>Eskildsen, Morten R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louden, Elizabeth R.</au><au>Manni, Soham</au><au>Van Zandt, Judah E.</au><au>Leishman, Alan W. D.</au><au>Taufour, Valentin</au><au>Bud'ko, Sergey L.</au><au>Debeer-Schmitt, Lisa M.</au><au>Honecker, Dirk</au><au>Dewhurst, Charles D.</au><au>Canfield, Paul C.</au><au>Eskildsen, Morten R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of magnetic and non-magnetic doping on the vortex lattice in MgB2</atitle><jtitle>Journal of applied crystallography</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>55</volume><issue>4</issue><issn>1600-5767</issn><eissn>1600-5767</eissn><abstract>Small-angle neutron scattering has been used to study the vortex lattice in superconducting MgB2 doped with either manganese or carbon to achieve a similar suppression of the critical tem­per­ature. Measurements were performed with the magnetic field applied along the c axis, where the vortex lattice in pure MgB2 is known to undergo a field- and tem­per­ature-driven 30° rotation transition. For Mn doping, the vortex lattice phase diagram remains qualitatively similar to that of pure MgB2, indicating only a modest effect on the vortex–vortex interaction. In contrast, the vortex lattice rotation transition is completely suppressed in the C-doped case, probably due to a change in the electronic structure which affects the two-band/two-gap nature of superconductivity in MgB2. The vortex lattice longitudinal correlation length shows the opposite behavior, remaining roughly unchanged between pure and C-doped MgB2 while it is significantly reduced in the Mn-doped case. However, the extensive vortex lattice metastability and related activated behavior, observed in conjunction with the vortex lattice transition in pure MgB2, are also seen in the Mn-doped sample. This shows that the vortex lattice disordering is not associated with a substantially increased vortex pinning.</abstract><cop>United States</cop><pub>International Union of Crystallography</pub><orcidid>https://orcid.org/0000000196793444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2022-06, Vol.55 (4)
issn 1600-5767
1600-5767
language eng
recordid cdi_osti_scitechconnect_1872849
source Wiley Online Library - AutoHoldings Journals; Alma/SFX Local Collection
subjects doping
MATERIALS SCIENCE
MgB2
small-angle neutron scattering
structural transition
vortex lattices
title Effects of magnetic and non-magnetic doping on the vortex lattice in MgB2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20magnetic%20and%20non-magnetic%20doping%20on%20the%20vortex%20lattice%20in%20MgB2&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Louden,%20Elizabeth%20R.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-06-15&rft.volume=55&rft.issue=4&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/&rft_dat=%3Costi%3E1872849%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true