Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control

•An innovative building envelope called Empower Wall was designed and tested.•The smart wall integrates with both thermal energy storage and active insulation.•Model predictive control was implemented to optimize energy consumption and cost.•The prototype system demonstrated the ability for both ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2022-08, Vol.266 (1), p.115823, Article 115823
Hauptverfasser: Atkins, Celeste, Hun, Diana, Im, Piljae, Post, Brian, Slattery, Bob, Iffa, Emishaw, Cui, Borui, Dong, Jin, Barnes, Abigail, Vaughan, Joshua, Roschli, Alex, Salonvaara, Mikael, Shrestha, Som, Jung, Sungkyun, Chesser, Phillip, Heineman, Jesse, Wang, Peter L., Jackson, Amiee, Lapsa, Melissa Voss
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 115823
container_title Energy conversion and management
container_volume 266
creator Atkins, Celeste
Hun, Diana
Im, Piljae
Post, Brian
Slattery, Bob
Iffa, Emishaw
Cui, Borui
Dong, Jin
Barnes, Abigail
Vaughan, Joshua
Roschli, Alex
Salonvaara, Mikael
Shrestha, Som
Jung, Sungkyun
Chesser, Phillip
Heineman, Jesse
Wang, Peter L.
Jackson, Amiee
Lapsa, Melissa Voss
description •An innovative building envelope called Empower Wall was designed and tested.•The smart wall integrates with both thermal energy storage and active insulation.•Model predictive control was implemented to optimize energy consumption and cost.•The prototype system demonstrated the ability for both energy and cost savings. Buildings are one of the largest energy consumers worldwide, using large amounts of energy during their construction and for climate control during operation. Active insulation systems (AIS) have been shown to reduce the energy needed for climate control in buildings by dynamically regulating the heat transferred between a building’s interior and exterior. Infrastructure-scale additive manufacturing (AM) has the potential to reduce the resources needed for building construction. Combining these two technologies into a single building envelope would create a path towards more sustainable buildings. A test was conducted for the Federal Energy Management Program (FEMP) Energy Exchange training and trade show, in August 2021, to investigate a new building envelope design, termed the Empower Wall, that utilized an AIS and was constructed using AM. Model predictive control was implemented to manage operation of the Empower Wall in concert with the existing HVAC system. The prototype system demonstrated that the Empower Wall lowered total energy consumption and reduced the cost of energy used.
doi_str_mv 10.1016/j.enconman.2022.115823
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890422006197</els_id><sourcerecordid>2718238138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2d36c15fd8f12f208176aaadecaccc5e1bee66bf560da9e655c3c288e9d2e4ea3</originalsourceid><addsrcrecordid>eNqFkM1OAyEURonRxFp9BTNx5WZGYBzKuLJp6k_SxI3GJUG4U2kYqMDU-PZSR9eubkLO_e7HQeic4Ipgwq42FTjlXS9dRTGlFSENp_UBmhA-a0tK6ewQTTBpWclbfH2MTmLcYIzrBrMJgmW_9Z8Qildp7U0xV8nsoDAuDlYm410Rv2KCvrCwgyDXxq0LqbX5ofLFoZMqDeHn2emi9xpssQ2gzRiUe6Xg7Sk66qSNcPY7p-jlbvm8eChXT_ePi_mqVLlNKqmumSJNp3lHaEcxJzMmpdSgpFKqAfIGwNhb1zCsZQusaVStKOfQagrXIOspuhhzfUxGRGUSqPfcwYFKIusg2UCGLkdoG_zHADGJ3kQF1koHfoiCZozWnNQ8o2xEVfAxBujENphehi9BsNjLFxvxJ1_s5YtRfl68HRch_3ZnIOzLZDKLCfsu2pv_Ir4BFOmTzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718238138</pqid></control><display><type>article</type><title>Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control</title><source>Elsevier ScienceDirect Journals</source><creator>Atkins, Celeste ; Hun, Diana ; Im, Piljae ; Post, Brian ; Slattery, Bob ; Iffa, Emishaw ; Cui, Borui ; Dong, Jin ; Barnes, Abigail ; Vaughan, Joshua ; Roschli, Alex ; Salonvaara, Mikael ; Shrestha, Som ; Jung, Sungkyun ; Chesser, Phillip ; Heineman, Jesse ; Wang, Peter L. ; Jackson, Amiee ; Lapsa, Melissa Voss</creator><creatorcontrib>Atkins, Celeste ; Hun, Diana ; Im, Piljae ; Post, Brian ; Slattery, Bob ; Iffa, Emishaw ; Cui, Borui ; Dong, Jin ; Barnes, Abigail ; Vaughan, Joshua ; Roschli, Alex ; Salonvaara, Mikael ; Shrestha, Som ; Jung, Sungkyun ; Chesser, Phillip ; Heineman, Jesse ; Wang, Peter L. ; Jackson, Amiee ; Lapsa, Melissa Voss ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>•An innovative building envelope called Empower Wall was designed and tested.•The smart wall integrates with both thermal energy storage and active insulation.•Model predictive control was implemented to optimize energy consumption and cost.•The prototype system demonstrated the ability for both energy and cost savings. Buildings are one of the largest energy consumers worldwide, using large amounts of energy during their construction and for climate control during operation. Active insulation systems (AIS) have been shown to reduce the energy needed for climate control in buildings by dynamically regulating the heat transferred between a building’s interior and exterior. Infrastructure-scale additive manufacturing (AM) has the potential to reduce the resources needed for building construction. Combining these two technologies into a single building envelope would create a path towards more sustainable buildings. A test was conducted for the Federal Energy Management Program (FEMP) Energy Exchange training and trade show, in August 2021, to investigate a new building envelope design, termed the Empower Wall, that utilized an AIS and was constructed using AM. Model predictive control was implemented to manage operation of the Empower Wall in concert with the existing HVAC system. The prototype system demonstrated that the Empower Wall lowered total energy consumption and reduced the cost of energy used.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2022.115823</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Active insulation ; Additive manufacturing ; administrative management ; Buildings ; climate ; energy conversion ; Energy storage ; energy transfer ; heat ; insulating materials ; MATERIALS SCIENCE ; Model predictive control ; Peak reduction ; prototypes ; trade shows</subject><ispartof>Energy conversion and management, 2022-08, Vol.266 (1), p.115823, Article 115823</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2d36c15fd8f12f208176aaadecaccc5e1bee66bf560da9e655c3c288e9d2e4ea3</citedby><cites>FETCH-LOGICAL-c350t-2d36c15fd8f12f208176aaadecaccc5e1bee66bf560da9e655c3c288e9d2e4ea3</cites><orcidid>0000000164746002 ; 0000000299786503 ; 0000000172595507 ; 0000000307573197 ; 0000000318991554 ; 0000000214502250 ; 0000000295242402 ; 0000000213084632 ; 0000000257531588 ; 0000000264670711 ; 000000021229657X ; 0000000183993797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2022.115823$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871890$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Atkins, Celeste</creatorcontrib><creatorcontrib>Hun, Diana</creatorcontrib><creatorcontrib>Im, Piljae</creatorcontrib><creatorcontrib>Post, Brian</creatorcontrib><creatorcontrib>Slattery, Bob</creatorcontrib><creatorcontrib>Iffa, Emishaw</creatorcontrib><creatorcontrib>Cui, Borui</creatorcontrib><creatorcontrib>Dong, Jin</creatorcontrib><creatorcontrib>Barnes, Abigail</creatorcontrib><creatorcontrib>Vaughan, Joshua</creatorcontrib><creatorcontrib>Roschli, Alex</creatorcontrib><creatorcontrib>Salonvaara, Mikael</creatorcontrib><creatorcontrib>Shrestha, Som</creatorcontrib><creatorcontrib>Jung, Sungkyun</creatorcontrib><creatorcontrib>Chesser, Phillip</creatorcontrib><creatorcontrib>Heineman, Jesse</creatorcontrib><creatorcontrib>Wang, Peter L.</creatorcontrib><creatorcontrib>Jackson, Amiee</creatorcontrib><creatorcontrib>Lapsa, Melissa Voss</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control</title><title>Energy conversion and management</title><description>•An innovative building envelope called Empower Wall was designed and tested.•The smart wall integrates with both thermal energy storage and active insulation.•Model predictive control was implemented to optimize energy consumption and cost.•The prototype system demonstrated the ability for both energy and cost savings. Buildings are one of the largest energy consumers worldwide, using large amounts of energy during their construction and for climate control during operation. Active insulation systems (AIS) have been shown to reduce the energy needed for climate control in buildings by dynamically regulating the heat transferred between a building’s interior and exterior. Infrastructure-scale additive manufacturing (AM) has the potential to reduce the resources needed for building construction. Combining these two technologies into a single building envelope would create a path towards more sustainable buildings. A test was conducted for the Federal Energy Management Program (FEMP) Energy Exchange training and trade show, in August 2021, to investigate a new building envelope design, termed the Empower Wall, that utilized an AIS and was constructed using AM. Model predictive control was implemented to manage operation of the Empower Wall in concert with the existing HVAC system. The prototype system demonstrated that the Empower Wall lowered total energy consumption and reduced the cost of energy used.</description><subject>Active insulation</subject><subject>Additive manufacturing</subject><subject>administrative management</subject><subject>Buildings</subject><subject>climate</subject><subject>energy conversion</subject><subject>Energy storage</subject><subject>energy transfer</subject><subject>heat</subject><subject>insulating materials</subject><subject>MATERIALS SCIENCE</subject><subject>Model predictive control</subject><subject>Peak reduction</subject><subject>prototypes</subject><subject>trade shows</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAyEURonRxFp9BTNx5WZGYBzKuLJp6k_SxI3GJUG4U2kYqMDU-PZSR9eubkLO_e7HQeic4Ipgwq42FTjlXS9dRTGlFSENp_UBmhA-a0tK6ewQTTBpWclbfH2MTmLcYIzrBrMJgmW_9Z8Qildp7U0xV8nsoDAuDlYm410Rv2KCvrCwgyDXxq0LqbX5ofLFoZMqDeHn2emi9xpssQ2gzRiUe6Xg7Sk66qSNcPY7p-jlbvm8eChXT_ePi_mqVLlNKqmumSJNp3lHaEcxJzMmpdSgpFKqAfIGwNhb1zCsZQusaVStKOfQagrXIOspuhhzfUxGRGUSqPfcwYFKIusg2UCGLkdoG_zHADGJ3kQF1koHfoiCZozWnNQ8o2xEVfAxBujENphehi9BsNjLFxvxJ1_s5YtRfl68HRch_3ZnIOzLZDKLCfsu2pv_Ir4BFOmTzw</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Atkins, Celeste</creator><creator>Hun, Diana</creator><creator>Im, Piljae</creator><creator>Post, Brian</creator><creator>Slattery, Bob</creator><creator>Iffa, Emishaw</creator><creator>Cui, Borui</creator><creator>Dong, Jin</creator><creator>Barnes, Abigail</creator><creator>Vaughan, Joshua</creator><creator>Roschli, Alex</creator><creator>Salonvaara, Mikael</creator><creator>Shrestha, Som</creator><creator>Jung, Sungkyun</creator><creator>Chesser, Phillip</creator><creator>Heineman, Jesse</creator><creator>Wang, Peter L.</creator><creator>Jackson, Amiee</creator><creator>Lapsa, Melissa Voss</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000164746002</orcidid><orcidid>https://orcid.org/0000000299786503</orcidid><orcidid>https://orcid.org/0000000172595507</orcidid><orcidid>https://orcid.org/0000000307573197</orcidid><orcidid>https://orcid.org/0000000318991554</orcidid><orcidid>https://orcid.org/0000000214502250</orcidid><orcidid>https://orcid.org/0000000295242402</orcidid><orcidid>https://orcid.org/0000000213084632</orcidid><orcidid>https://orcid.org/0000000257531588</orcidid><orcidid>https://orcid.org/0000000264670711</orcidid><orcidid>https://orcid.org/000000021229657X</orcidid><orcidid>https://orcid.org/0000000183993797</orcidid></search><sort><creationdate>20220815</creationdate><title>Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control</title><author>Atkins, Celeste ; Hun, Diana ; Im, Piljae ; Post, Brian ; Slattery, Bob ; Iffa, Emishaw ; Cui, Borui ; Dong, Jin ; Barnes, Abigail ; Vaughan, Joshua ; Roschli, Alex ; Salonvaara, Mikael ; Shrestha, Som ; Jung, Sungkyun ; Chesser, Phillip ; Heineman, Jesse ; Wang, Peter L. ; Jackson, Amiee ; Lapsa, Melissa Voss</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2d36c15fd8f12f208176aaadecaccc5e1bee66bf560da9e655c3c288e9d2e4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active insulation</topic><topic>Additive manufacturing</topic><topic>administrative management</topic><topic>Buildings</topic><topic>climate</topic><topic>energy conversion</topic><topic>Energy storage</topic><topic>energy transfer</topic><topic>heat</topic><topic>insulating materials</topic><topic>MATERIALS SCIENCE</topic><topic>Model predictive control</topic><topic>Peak reduction</topic><topic>prototypes</topic><topic>trade shows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atkins, Celeste</creatorcontrib><creatorcontrib>Hun, Diana</creatorcontrib><creatorcontrib>Im, Piljae</creatorcontrib><creatorcontrib>Post, Brian</creatorcontrib><creatorcontrib>Slattery, Bob</creatorcontrib><creatorcontrib>Iffa, Emishaw</creatorcontrib><creatorcontrib>Cui, Borui</creatorcontrib><creatorcontrib>Dong, Jin</creatorcontrib><creatorcontrib>Barnes, Abigail</creatorcontrib><creatorcontrib>Vaughan, Joshua</creatorcontrib><creatorcontrib>Roschli, Alex</creatorcontrib><creatorcontrib>Salonvaara, Mikael</creatorcontrib><creatorcontrib>Shrestha, Som</creatorcontrib><creatorcontrib>Jung, Sungkyun</creatorcontrib><creatorcontrib>Chesser, Phillip</creatorcontrib><creatorcontrib>Heineman, Jesse</creatorcontrib><creatorcontrib>Wang, Peter L.</creatorcontrib><creatorcontrib>Jackson, Amiee</creatorcontrib><creatorcontrib>Lapsa, Melissa Voss</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atkins, Celeste</au><au>Hun, Diana</au><au>Im, Piljae</au><au>Post, Brian</au><au>Slattery, Bob</au><au>Iffa, Emishaw</au><au>Cui, Borui</au><au>Dong, Jin</au><au>Barnes, Abigail</au><au>Vaughan, Joshua</au><au>Roschli, Alex</au><au>Salonvaara, Mikael</au><au>Shrestha, Som</au><au>Jung, Sungkyun</au><au>Chesser, Phillip</au><au>Heineman, Jesse</au><au>Wang, Peter L.</au><au>Jackson, Amiee</au><au>Lapsa, Melissa Voss</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control</atitle><jtitle>Energy conversion and management</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>266</volume><issue>1</issue><spage>115823</spage><pages>115823-</pages><artnum>115823</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•An innovative building envelope called Empower Wall was designed and tested.•The smart wall integrates with both thermal energy storage and active insulation.•Model predictive control was implemented to optimize energy consumption and cost.•The prototype system demonstrated the ability for both energy and cost savings. Buildings are one of the largest energy consumers worldwide, using large amounts of energy during their construction and for climate control during operation. Active insulation systems (AIS) have been shown to reduce the energy needed for climate control in buildings by dynamically regulating the heat transferred between a building’s interior and exterior. Infrastructure-scale additive manufacturing (AM) has the potential to reduce the resources needed for building construction. Combining these two technologies into a single building envelope would create a path towards more sustainable buildings. A test was conducted for the Federal Energy Management Program (FEMP) Energy Exchange training and trade show, in August 2021, to investigate a new building envelope design, termed the Empower Wall, that utilized an AIS and was constructed using AM. Model predictive control was implemented to manage operation of the Empower Wall in concert with the existing HVAC system. The prototype system demonstrated that the Empower Wall lowered total energy consumption and reduced the cost of energy used.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2022.115823</doi><orcidid>https://orcid.org/0000000164746002</orcidid><orcidid>https://orcid.org/0000000299786503</orcidid><orcidid>https://orcid.org/0000000172595507</orcidid><orcidid>https://orcid.org/0000000307573197</orcidid><orcidid>https://orcid.org/0000000318991554</orcidid><orcidid>https://orcid.org/0000000214502250</orcidid><orcidid>https://orcid.org/0000000295242402</orcidid><orcidid>https://orcid.org/0000000213084632</orcidid><orcidid>https://orcid.org/0000000257531588</orcidid><orcidid>https://orcid.org/0000000264670711</orcidid><orcidid>https://orcid.org/000000021229657X</orcidid><orcidid>https://orcid.org/0000000183993797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2022-08, Vol.266 (1), p.115823, Article 115823
issn 0196-8904
1879-2227
language eng
recordid cdi_osti_scitechconnect_1871890
source Elsevier ScienceDirect Journals
subjects Active insulation
Additive manufacturing
administrative management
Buildings
climate
energy conversion
Energy storage
energy transfer
heat
insulating materials
MATERIALS SCIENCE
Model predictive control
Peak reduction
prototypes
trade shows
title Empower Wall: Active insulation system leveraging additive manufacturing and model predictive control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empower%20Wall:%20Active%20insulation%20system%20leveraging%20additive%20manufacturing%20and%20model%20predictive%20control&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Atkins,%20Celeste&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2022-08-15&rft.volume=266&rft.issue=1&rft.spage=115823&rft.pages=115823-&rft.artnum=115823&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2022.115823&rft_dat=%3Cproquest_osti_%3E2718238138%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718238138&rft_id=info:pmid/&rft_els_id=S0196890422006197&rfr_iscdi=true