Fermi surface studies of the low-temperature structure of sodium

Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polyty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-06, Vol.101 (22), p.1, Article 220103
Hauptverfasser: Elatresh, S. F., Hossain, Mohammad Tomal, Bhowmick, Tushar, Grockowiak, A. D., Cai, Weizhao, Coniglio, W. A., Tozer, Stanley W., Ashcroft, N. W., Bonev, S. A., Deemyad, Shanti, Hoffmann, Roald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 1
container_title Physical review. B
container_volume 101
creator Elatresh, S. F.
Hossain, Mohammad Tomal
Bhowmick, Tushar
Grockowiak, A. D.
Cai, Weizhao
Coniglio, W. A.
Tozer, Stanley W.
Ashcroft, N. W.
Bonev, S. A.
Deemyad, Shanti
Hoffmann, Roald
description Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.
doi_str_mv 10.1103/PhysRevB.101.220103
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429799141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGp_gZdFz1tnNulmc1OLVaGgiJ7DJjuhW7pNTbJK_72rVZnDPN58DI_H2DnCFBH41fNqH1_o43aKgNOigME7YqNClCpXqlTH_3oGp2wS4xoAsAQlQY3Y9YJC12axD662lMXUNy3FzLssrSjb-M88UbejUKc-fJ9Db3_UAETftH13xk5cvYk0-d1j9ra4e50_5Mun-8f5zTK3XKiUN6ounTWVIxRlCQ3KyghwppBgSjGThXBQc2kqU0FjpDM0DCCn2lZNhZyP2cXhr4-p1dG2iezK-u2WbNJYSZRKDNDlAdoF_95TTHrt-7AdculCFEoqhQIHih8oG3yMgZzehbarw14j6O9K9V-lg4H6UCn_Akx6azY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429799141</pqid></control><display><type>article</type><title>Fermi surface studies of the low-temperature structure of sodium</title><source>American Physical Society Journals</source><creator>Elatresh, S. F. ; Hossain, Mohammad Tomal ; Bhowmick, Tushar ; Grockowiak, A. D. ; Cai, Weizhao ; Coniglio, W. A. ; Tozer, Stanley W. ; Ashcroft, N. W. ; Bonev, S. A. ; Deemyad, Shanti ; Hoffmann, Roald</creator><creatorcontrib>Elatresh, S. F. ; Hossain, Mohammad Tomal ; Bhowmick, Tushar ; Grockowiak, A. D. ; Cai, Weizhao ; Coniglio, W. A. ; Tozer, Stanley W. ; Ashcroft, N. W. ; Bonev, S. A. ; Deemyad, Shanti ; Hoffmann, Roald ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Univ. of Rochester, NY (United States)</creatorcontrib><description>Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.220103</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Alkali metals ; BCC metals ; Body centered cubic lattice ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal structure ; Fermi surface ; Fermi surfaces ; First principles ; First-principles calculations ; Low temperature ; Martensite ; Phase transitions ; Polytypes ; Quantum oscillation techniques ; Sodium</subject><ispartof>Physical review. B, 2020-06, Vol.101 (22), p.1, Article 220103</ispartof><rights>Copyright American Physical Society Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</citedby><cites>FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</cites><orcidid>0000-0002-9587-707X ; 0000-0001-7805-2108 ; 0000-0001-5207-486X ; 0000-0001-6697-3807 ; 000000015207486X ; 0000000178052108 ; 000000029587707X ; 0000000166973807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871794$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Hossain, Mohammad Tomal</creatorcontrib><creatorcontrib>Bhowmick, Tushar</creatorcontrib><creatorcontrib>Grockowiak, A. D.</creatorcontrib><creatorcontrib>Cai, Weizhao</creatorcontrib><creatorcontrib>Coniglio, W. A.</creatorcontrib><creatorcontrib>Tozer, Stanley W.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Deemyad, Shanti</creatorcontrib><creatorcontrib>Hoffmann, Roald</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><title>Fermi surface studies of the low-temperature structure of sodium</title><title>Physical review. B</title><description>Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.</description><subject>Alkali metals</subject><subject>BCC metals</subject><subject>Body centered cubic lattice</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal structure</subject><subject>Fermi surface</subject><subject>Fermi surfaces</subject><subject>First principles</subject><subject>First-principles calculations</subject><subject>Low temperature</subject><subject>Martensite</subject><subject>Phase transitions</subject><subject>Polytypes</subject><subject>Quantum oscillation techniques</subject><subject>Sodium</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWGp_gZdFz1tnNulmc1OLVaGgiJ7DJjuhW7pNTbJK_72rVZnDPN58DI_H2DnCFBH41fNqH1_o43aKgNOigME7YqNClCpXqlTH_3oGp2wS4xoAsAQlQY3Y9YJC12axD662lMXUNy3FzLssrSjb-M88UbejUKc-fJ9Db3_UAETftH13xk5cvYk0-d1j9ra4e50_5Mun-8f5zTK3XKiUN6ounTWVIxRlCQ3KyghwppBgSjGThXBQc2kqU0FjpDM0DCCn2lZNhZyP2cXhr4-p1dG2iezK-u2WbNJYSZRKDNDlAdoF_95TTHrt-7AdculCFEoqhQIHih8oG3yMgZzehbarw14j6O9K9V-lg4H6UCn_Akx6azY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Elatresh, S. F.</creator><creator>Hossain, Mohammad Tomal</creator><creator>Bhowmick, Tushar</creator><creator>Grockowiak, A. D.</creator><creator>Cai, Weizhao</creator><creator>Coniglio, W. A.</creator><creator>Tozer, Stanley W.</creator><creator>Ashcroft, N. W.</creator><creator>Bonev, S. A.</creator><creator>Deemyad, Shanti</creator><creator>Hoffmann, Roald</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9587-707X</orcidid><orcidid>https://orcid.org/0000-0001-7805-2108</orcidid><orcidid>https://orcid.org/0000-0001-5207-486X</orcidid><orcidid>https://orcid.org/0000-0001-6697-3807</orcidid><orcidid>https://orcid.org/000000015207486X</orcidid><orcidid>https://orcid.org/0000000178052108</orcidid><orcidid>https://orcid.org/000000029587707X</orcidid><orcidid>https://orcid.org/0000000166973807</orcidid></search><sort><creationdate>20200601</creationdate><title>Fermi surface studies of the low-temperature structure of sodium</title><author>Elatresh, S. F. ; Hossain, Mohammad Tomal ; Bhowmick, Tushar ; Grockowiak, A. D. ; Cai, Weizhao ; Coniglio, W. A. ; Tozer, Stanley W. ; Ashcroft, N. W. ; Bonev, S. A. ; Deemyad, Shanti ; Hoffmann, Roald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metals</topic><topic>BCC metals</topic><topic>Body centered cubic lattice</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal structure</topic><topic>Fermi surface</topic><topic>Fermi surfaces</topic><topic>First principles</topic><topic>First-principles calculations</topic><topic>Low temperature</topic><topic>Martensite</topic><topic>Phase transitions</topic><topic>Polytypes</topic><topic>Quantum oscillation techniques</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Hossain, Mohammad Tomal</creatorcontrib><creatorcontrib>Bhowmick, Tushar</creatorcontrib><creatorcontrib>Grockowiak, A. D.</creatorcontrib><creatorcontrib>Cai, Weizhao</creatorcontrib><creatorcontrib>Coniglio, W. A.</creatorcontrib><creatorcontrib>Tozer, Stanley W.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Deemyad, Shanti</creatorcontrib><creatorcontrib>Hoffmann, Roald</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elatresh, S. F.</au><au>Hossain, Mohammad Tomal</au><au>Bhowmick, Tushar</au><au>Grockowiak, A. D.</au><au>Cai, Weizhao</au><au>Coniglio, W. A.</au><au>Tozer, Stanley W.</au><au>Ashcroft, N. W.</au><au>Bonev, S. A.</au><au>Deemyad, Shanti</au><au>Hoffmann, Roald</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Univ. of Rochester, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi surface studies of the low-temperature structure of sodium</atitle><jtitle>Physical review. B</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>22</issue><spage>1</spage><pages>1-</pages><artnum>220103</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.220103</doi><orcidid>https://orcid.org/0000-0002-9587-707X</orcidid><orcidid>https://orcid.org/0000-0001-7805-2108</orcidid><orcidid>https://orcid.org/0000-0001-5207-486X</orcidid><orcidid>https://orcid.org/0000-0001-6697-3807</orcidid><orcidid>https://orcid.org/000000015207486X</orcidid><orcidid>https://orcid.org/0000000178052108</orcidid><orcidid>https://orcid.org/000000029587707X</orcidid><orcidid>https://orcid.org/0000000166973807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-06, Vol.101 (22), p.1, Article 220103
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1871794
source American Physical Society Journals
subjects Alkali metals
BCC metals
Body centered cubic lattice
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Crystal structure
Fermi surface
Fermi surfaces
First principles
First-principles calculations
Low temperature
Martensite
Phase transitions
Polytypes
Quantum oscillation techniques
Sodium
title Fermi surface studies of the low-temperature structure of sodium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%20surface%20studies%20of%20the%20low-temperature%20structure%20of%20sodium&rft.jtitle=Physical%20review.%20B&rft.au=Elatresh,%20S.%20F.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-06-01&rft.volume=101&rft.issue=22&rft.spage=1&rft.pages=1-&rft.artnum=220103&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.220103&rft_dat=%3Cproquest_osti_%3E2429799141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429799141&rft_id=info:pmid/&rfr_iscdi=true