Fermi surface studies of the low-temperature structure of sodium
Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polyty...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-06, Vol.101 (22), p.1, Article 220103 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 101 |
creator | Elatresh, S. F. Hossain, Mohammad Tomal Bhowmick, Tushar Grockowiak, A. D. Cai, Weizhao Coniglio, W. A. Tozer, Stanley W. Ashcroft, N. W. Bonev, S. A. Deemyad, Shanti Hoffmann, Roald |
description | Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration. |
doi_str_mv | 10.1103/PhysRevB.101.220103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1871794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429799141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGp_gZdFz1tnNulmc1OLVaGgiJ7DJjuhW7pNTbJK_72rVZnDPN58DI_H2DnCFBH41fNqH1_o43aKgNOigME7YqNClCpXqlTH_3oGp2wS4xoAsAQlQY3Y9YJC12axD662lMXUNy3FzLssrSjb-M88UbejUKc-fJ9Db3_UAETftH13xk5cvYk0-d1j9ra4e50_5Mun-8f5zTK3XKiUN6ounTWVIxRlCQ3KyghwppBgSjGThXBQc2kqU0FjpDM0DCCn2lZNhZyP2cXhr4-p1dG2iezK-u2WbNJYSZRKDNDlAdoF_95TTHrt-7AdculCFEoqhQIHih8oG3yMgZzehbarw14j6O9K9V-lg4H6UCn_Akx6azY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429799141</pqid></control><display><type>article</type><title>Fermi surface studies of the low-temperature structure of sodium</title><source>American Physical Society Journals</source><creator>Elatresh, S. F. ; Hossain, Mohammad Tomal ; Bhowmick, Tushar ; Grockowiak, A. D. ; Cai, Weizhao ; Coniglio, W. A. ; Tozer, Stanley W. ; Ashcroft, N. W. ; Bonev, S. A. ; Deemyad, Shanti ; Hoffmann, Roald</creator><creatorcontrib>Elatresh, S. F. ; Hossain, Mohammad Tomal ; Bhowmick, Tushar ; Grockowiak, A. D. ; Cai, Weizhao ; Coniglio, W. A. ; Tozer, Stanley W. ; Ashcroft, N. W. ; Bonev, S. A. ; Deemyad, Shanti ; Hoffmann, Roald ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Univ. of Rochester, NY (United States)</creatorcontrib><description>Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.101.220103</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Alkali metals ; BCC metals ; Body centered cubic lattice ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Crystal structure ; Fermi surface ; Fermi surfaces ; First principles ; First-principles calculations ; Low temperature ; Martensite ; Phase transitions ; Polytypes ; Quantum oscillation techniques ; Sodium</subject><ispartof>Physical review. B, 2020-06, Vol.101 (22), p.1, Article 220103</ispartof><rights>Copyright American Physical Society Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</citedby><cites>FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</cites><orcidid>0000-0002-9587-707X ; 0000-0001-7805-2108 ; 0000-0001-5207-486X ; 0000-0001-6697-3807 ; 000000015207486X ; 0000000178052108 ; 000000029587707X ; 0000000166973807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1871794$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Hossain, Mohammad Tomal</creatorcontrib><creatorcontrib>Bhowmick, Tushar</creatorcontrib><creatorcontrib>Grockowiak, A. D.</creatorcontrib><creatorcontrib>Cai, Weizhao</creatorcontrib><creatorcontrib>Coniglio, W. A.</creatorcontrib><creatorcontrib>Tozer, Stanley W.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Deemyad, Shanti</creatorcontrib><creatorcontrib>Hoffmann, Roald</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><title>Fermi surface studies of the low-temperature structure of sodium</title><title>Physical review. B</title><description>Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.</description><subject>Alkali metals</subject><subject>BCC metals</subject><subject>Body centered cubic lattice</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Crystal structure</subject><subject>Fermi surface</subject><subject>Fermi surfaces</subject><subject>First principles</subject><subject>First-principles calculations</subject><subject>Low temperature</subject><subject>Martensite</subject><subject>Phase transitions</subject><subject>Polytypes</subject><subject>Quantum oscillation techniques</subject><subject>Sodium</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWGp_gZdFz1tnNulmc1OLVaGgiJ7DJjuhW7pNTbJK_72rVZnDPN58DI_H2DnCFBH41fNqH1_o43aKgNOigME7YqNClCpXqlTH_3oGp2wS4xoAsAQlQY3Y9YJC12axD662lMXUNy3FzLssrSjb-M88UbejUKc-fJ9Db3_UAETftH13xk5cvYk0-d1j9ra4e50_5Mun-8f5zTK3XKiUN6ounTWVIxRlCQ3KyghwppBgSjGThXBQc2kqU0FjpDM0DCCn2lZNhZyP2cXhr4-p1dG2iezK-u2WbNJYSZRKDNDlAdoF_95TTHrt-7AdculCFEoqhQIHih8oG3yMgZzehbarw14j6O9K9V-lg4H6UCn_Akx6azY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Elatresh, S. F.</creator><creator>Hossain, Mohammad Tomal</creator><creator>Bhowmick, Tushar</creator><creator>Grockowiak, A. D.</creator><creator>Cai, Weizhao</creator><creator>Coniglio, W. A.</creator><creator>Tozer, Stanley W.</creator><creator>Ashcroft, N. W.</creator><creator>Bonev, S. A.</creator><creator>Deemyad, Shanti</creator><creator>Hoffmann, Roald</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9587-707X</orcidid><orcidid>https://orcid.org/0000-0001-7805-2108</orcidid><orcidid>https://orcid.org/0000-0001-5207-486X</orcidid><orcidid>https://orcid.org/0000-0001-6697-3807</orcidid><orcidid>https://orcid.org/000000015207486X</orcidid><orcidid>https://orcid.org/0000000178052108</orcidid><orcidid>https://orcid.org/000000029587707X</orcidid><orcidid>https://orcid.org/0000000166973807</orcidid></search><sort><creationdate>20200601</creationdate><title>Fermi surface studies of the low-temperature structure of sodium</title><author>Elatresh, S. F. ; Hossain, Mohammad Tomal ; Bhowmick, Tushar ; Grockowiak, A. D. ; Cai, Weizhao ; Coniglio, W. A. ; Tozer, Stanley W. ; Ashcroft, N. W. ; Bonev, S. A. ; Deemyad, Shanti ; Hoffmann, Roald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d9a6fcb8fe14660d178b40fb270b645724f0a37b8b80db7fbebeb013eac8d8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkali metals</topic><topic>BCC metals</topic><topic>Body centered cubic lattice</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Crystal structure</topic><topic>Fermi surface</topic><topic>Fermi surfaces</topic><topic>First principles</topic><topic>First-principles calculations</topic><topic>Low temperature</topic><topic>Martensite</topic><topic>Phase transitions</topic><topic>Polytypes</topic><topic>Quantum oscillation techniques</topic><topic>Sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elatresh, S. F.</creatorcontrib><creatorcontrib>Hossain, Mohammad Tomal</creatorcontrib><creatorcontrib>Bhowmick, Tushar</creatorcontrib><creatorcontrib>Grockowiak, A. D.</creatorcontrib><creatorcontrib>Cai, Weizhao</creatorcontrib><creatorcontrib>Coniglio, W. A.</creatorcontrib><creatorcontrib>Tozer, Stanley W.</creatorcontrib><creatorcontrib>Ashcroft, N. W.</creatorcontrib><creatorcontrib>Bonev, S. A.</creatorcontrib><creatorcontrib>Deemyad, Shanti</creatorcontrib><creatorcontrib>Hoffmann, Roald</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elatresh, S. F.</au><au>Hossain, Mohammad Tomal</au><au>Bhowmick, Tushar</au><au>Grockowiak, A. D.</au><au>Cai, Weizhao</au><au>Coniglio, W. A.</au><au>Tozer, Stanley W.</au><au>Ashcroft, N. W.</au><au>Bonev, S. A.</au><au>Deemyad, Shanti</au><au>Hoffmann, Roald</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Univ. of Rochester, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fermi surface studies of the low-temperature structure of sodium</atitle><jtitle>Physical review. B</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>101</volume><issue>22</issue><spage>1</spage><pages>1-</pages><artnum>220103</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Sodium is the most abundant alkali-metal element and has one of the simplest electronic structures of any metal. At ambient conditions, sodium forms a body-centered-cubic lattice. However, during cooling, it undergoes a partial martensitic phase transition to a complex mixture of rhombohedral polytypes commencing from 36 K. Although the Fermi surface (FS) of bcc sodium has been extensively studied, not much attention has been given to the FS of the martensite structure. Here we report results for the Fermi surface and quantum oscillation (QO) frequencies of several energetically favorable crystal structures of Na at low temperature from first-principles calculations. Interestingly we find that despite drastic differences in the crystal structures of the candidate low-temperature phases of sodium, for all these phases the strongest quantum oscillation peak is centered at 28 kT. Our theoretical results are accompanied by experimental data of QO on a multigrain sodium sample at T = 0.3 K and Bmax = 18 T exhibiting a sharp peak at 28 kT, independent of the sample orientation. The persistence of this peak even in the presence of the structural transitions has an implication for using the quantum oscillations of polycrystalline sodium for high magnetic field calibration.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.101.220103</doi><orcidid>https://orcid.org/0000-0002-9587-707X</orcidid><orcidid>https://orcid.org/0000-0001-7805-2108</orcidid><orcidid>https://orcid.org/0000-0001-5207-486X</orcidid><orcidid>https://orcid.org/0000-0001-6697-3807</orcidid><orcidid>https://orcid.org/000000015207486X</orcidid><orcidid>https://orcid.org/0000000178052108</orcidid><orcidid>https://orcid.org/000000029587707X</orcidid><orcidid>https://orcid.org/0000000166973807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-06, Vol.101 (22), p.1, Article 220103 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1871794 |
source | American Physical Society Journals |
subjects | Alkali metals BCC metals Body centered cubic lattice CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Crystal structure Fermi surface Fermi surfaces First principles First-principles calculations Low temperature Martensite Phase transitions Polytypes Quantum oscillation techniques Sodium |
title | Fermi surface studies of the low-temperature structure of sodium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fermi%20surface%20studies%20of%20the%20low-temperature%20structure%20of%20sodium&rft.jtitle=Physical%20review.%20B&rft.au=Elatresh,%20S.%20F.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-06-01&rft.volume=101&rft.issue=22&rft.spage=1&rft.pages=1-&rft.artnum=220103&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.101.220103&rft_dat=%3Cproquest_osti_%3E2429799141%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429799141&rft_id=info:pmid/&rfr_iscdi=true |